Letztes Update am So., 23 Apr. 2023 02:38:45 +0200 von Andreas Potthoff
Mathematische Funktionen, die nicht Commodore 64 BASIC eigen sind, können wie folgt berechnet werden:
Mathematische Funktion | BASIC Äquivalent |
SECANT | SEC(X) = 1/COS(X) |
COSECANT | CSC(X) = 1/SIN(X) |
COTANGENT | COT(X) = 1/TAN(X) |
INVERSE SINE | ARCSIN(X) = ATN(X/SQR(-X*X+1)) |
INVERSE COSINE | ARCCOS(X) = -ATN(X/SQR(-X*X+1))+{pi}/2 |
INVERSE SECANT | ARCSEC(X) = ATN(X/SQR(X*X-1)) |
INVERSE COSECANT | ARCCSC(X) = ATN(X/SQR(X*X-1))+(SGN(X)-1*{pi}/2 |
INVERSE COTANGENT | ARCOT(X) = ATN(X)+{pi}/2 |
HYPERBOLIC SINE | SINH(X) = (EXP(X)-EXP(-X))/2 |
HYPERBOLIC COSINE | COSH(X) = (EXP(X)+EXP(-X))/2 |
HYPERBOLIC TANGENT | TANH(X) = EXP(-X)/(EXP(X)+EXP(-X))*2+1 |
HYPERBOLIC SECANT | SECH(X) = 2/(EXP(X)+EXP(-X)) |
HYPERBOLIC COSECANT | CSCH(X) = 2/(EXP(X)-EXP(-X)) |
HYPERBOLIC COTANGENT | COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))*2+1 |
INVERSE HYPERBOLIC SINE | ARCSINH(X) = LOG(X+SQR(X*X+1)) |
INVERSE HYPERBOLIC COSINE | ARCCOSH(X) = LOG(X+SQR(X*X-1)) |
INVERSE HYPERBOLIC TANGENT | ARCTANH(X) = LOG((1+X)/(1-X))/2 |
INVERSE HYPERBOLIC SECANT | ARCSECH(X) = LOG((SQR(-X*X+1)+1/X) |
INVERSE HYPERBOLIC COSECANT | ARCCSCH(X) = LOG((SGN(X)*SQR(X*X+1/X) |
INVERSE HYPERBOLIC COTANGENT | ARCCOTH(X) = LOG((X+1)/(X-1))/2 |