C64 BASIC V2.0: Ableitung mathematischer Funktionen


Mathematische Funktionen, die nicht Commodore 64 BASIC eigen sind, können wie folgt berechnet werden:

Mathematische Funktion BASIC Äquivalent
SECANT SEC(X) = 1/COS(X)
COSECANT CSC(X) = 1/SIN(X)
COTANGENT COT(X) = 1/TAN(X)
INVERSE SINE ARCSIN(X) = ATN(X/SQR(-X*X+1))
INVERSE COSINE ARCCOS(X) = -ATN(X/SQR(-X*X+1))+{pi}/2
INVERSE SECANT ARCSEC(X) = ATN(X/SQR(X*X-1))
INVERSE COSECANT ARCCSC(X) = ATN(X/SQR(X*X-1))+(SGN(X)-1*{pi}/2
INVERSE COTANGENT ARCOT(X) = ATN(X)+{pi}/2
HYPERBOLIC SINE SINH(X) = (EXP(X)-EXP(-X))/2
HYPERBOLIC COSINE COSH(X) = (EXP(X)+EXP(-X))/2
HYPERBOLIC TANGENT TANH(X) = EXP(-X)/(EXP(X)+EXP(-X))*2+1
HYPERBOLIC SECANT SECH(X) = 2/(EXP(X)+EXP(-X))
HYPERBOLIC COSECANT CSCH(X) = 2/(EXP(X)-EXP(-X))
HYPERBOLIC COTANGENT COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))*2+1
INVERSE HYPERBOLIC SINE ARCSINH(X) = LOG(X+SQR(X*X+1))
INVERSE HYPERBOLIC COSINE ARCCOSH(X) = LOG(X+SQR(X*X-1))
INVERSE HYPERBOLIC TANGENT ARCTANH(X) = LOG((1+X)/(1-X))/2
INVERSE HYPERBOLIC SECANT ARCSECH(X) = LOG((SQR(-X*X+1)+1/X)
INVERSE HYPERBOLIC COSECANT ARCCSCH(X) = LOG((SGN(X)*SQR(X*X+1/X)
INVERSE HYPERBOLIC COTANGENT ARCCOTH(X) = LOG((X+1)/(X-1))/2