Quantensystem: Schaukeln auf der Quantenebene

Forschungs-Team aus Münster, Bayreuth und Berlin schlägt einen neuen Weg vor, um Einzelphotonen zu erzeugen

Nach der „ersten Quantenrevolution“ – der Entwicklung von Geräten wie Laser und Atomuhr – ist derzeit die „zweite Quantenrevolution“ im vollen Gange: Experten aus aller Welt entwickeln grundlegend neue Technologien, die auf der Quantenphysik beruhen. Eine Schlüsselanwendung ist die Quantenkommunikation, bei der Informationen in Licht geschrieben und verschickt werden. Für viele Anwendungen von Quanteneffekten muss das Licht in einem bestimmten Zustand sein, nämlich in einem Einzelphotonenzustand. Aber wie erzeugt man solche 2021 und Berlin schlagen in der aktuellen Ausgabe des Fachjournals „PRX-Quantum“ jetzt einen neuen Weg vor, ein Quantensystem zu präparieren, um Bauteile für die Quantentechnologie zu entwickeln.

Aus Expertensicht ist es sehr vielversprechend, Quantensysteme zu nutzen, um Einzelphotonenzustände zu erzeugen. Ein bekanntes Beispiel für solch ein Quantensystem ist ein Quantenpunkt. Dabei handelt es sich um eine Halbleiter-Struktur, die nur wenige Nanometer groß ist. Mit Hilfe von Lasern kann man Quantenpunkte ansteuern. Zwar haben Quantenpunkte ähnliche Eigenschaften wie Atome, aber sie sind in einem Kristall vorhanden, was für Anwendungen oft praktischer ist. „Quantenpunkte sind hervorragend für die Erzeugung einzelner Photonen geeignet, und das machen wir in unserem Labor auch schon beinahe täglich. Aber man kann daran noch viel verbessern, gerade wenn man diese Technologie aus dem Labor in die Anwendung bringen möchte“, sagt Dr. Tobias Heindel, Leiter eines Experimentallabors für die Quantenkommunikation an der TU Berlin.

Eine Schwierigkeit, die man überwinden muss, ist die Trennung der erzeugten Einzelphotonen von dem anregenden Licht des Lasers. In ihrer Arbeit schlagen die Forscher eine ganz neue Methode vor, um dieses Problem zu lösen. „Die Anregung nutzt einen Schaukel-Prozess in dem Quantensystem aus. Dafür nutzen wir einen oder mehrere Laserpulse, welche Frequenzen haben, die sich von denen des Systems deutlich unterscheiden. Dies macht das spektrale Filtern sehr einfach“, erklärt der Erstautor der Studie, Thomas Bracht von der Universität Münster.

Als „Schaukel-Prozess“ bezeichnen die Wissenschaftler ein besonderes Verhalten der durch das Laserlicht in dem Quantensystem angeregten Teilchen – der Elektronen, genauer gesagt Elektron-Loch-Paare (Exzitonen). Dabei benutzt man Laserlicht von zwei Lasern, die nahezu gleichzeitig Lichtpulse abgeben. Durch die Wechselwirkung der Pulse miteinander entsteht eine schnelle Modulation. Bei jedem Modulationszyklus wird das Teilchen immer etwas angeregt, aber auch wieder abgeregt. Dabei fällt es nicht auf den vorherigen Stand, sondern wird mit jedem „Schaukelschwung“ stärker angeregt, bis es den maximalen Zustand erreicht. Der Vorteil dieser Methode ist, dass das Laserlicht nicht dieselbe Frequenz hat wie das Licht, das von den angeregten Teilchen abgegeben wird. Vom Quantenpunkt abgegebene Photonen können daher eindeutig zugeordnet werden.

Das Team hat diesen Prozess in dem Quantensystem simuliert und so Richtlinien zur experimentellen Realisierung gegeben. „Wir erklären auch die Physik des Schaukel-Prozesses, was uns dabei hilft, die Dynamik in Quantensystemen besser zu verstehen“, betont Juniorprofessorin Dr. Doris Reiter, die die Studie geleitet hat.

Um die Photonen in der Quantenkommunikation benutzen zu können, müssen sie gewisse Eigenschaften besitzen. Außerdem sollte die Kontrolle des Quantensystems nicht negativ durch die Umgebung oder Störeinflüsse beeinflusst werden. In Quantenpunkten ist besonders die Wechselwirkung mit dem umgebenden Halbleitermaterial oft ein großes Problem für solche Kontrollschemas. „Unsere numerischen Simulationen zeigen, dass die Eigenschaften der erzeugten Photonen nach dem Hochschaukeln vergleichbar sind mit den Ergebnissen etablierter Methoden zur Erzeugung von Einzelphotonen, die aber weniger praktisch arbeiten“, ergänzt Prof. Dr. Martin Axt, der das Forscher-Team aus Bayreuth leitet.

Bei der Studie handelt es sich um eine theoretische Arbeit. Durch die Zusammenarbeit zwischen theoretischen und experimentellen Gruppen ist der Vorschlag jedoch sehr nahe an realisierbaren, experimentellen Laborbedingungen. Die Autoren sind zuversichtlich, dass eine experimentelle Umsetzung des Schemas in Kürze erfolgen wird.

Förderung

Das Projekt-Team aus Münster hatte finanzielle Unterstützung von der der Deutschen Forschungsgemeinschaft (DFG) über das Projekt 428026575. Tobias Heindel wird gefördert vom Bundesministerium für Bildung und Forschung (BMBF) über das Projekt “QuSecure” (Grant No. 13N14876) im Rahmen der Photonik Forschung Deutschland. Alexei Vagov hatte finanzielle Unterstützung von der Russian Science Foundation über das Projekt No. 18-12-00429.

Originalveröffentlichung:

Thomas K. Bracht, Michael Cosacchi, Tim Seidelmann, Moritz Cygorek, Alexei Vagov, V. Martin Axt, Tobias Heindel, and Doris E. Reiter (2021): Swing-Up of Quantum Emitter Population Using Detuned Pulses. PRX Quantum 2, 040354; DOI: 10.1103/PRXQuantum.2.040354


Links:


Quelle: Pressemitteilung / Pressestelle der Universität Münster (upm)




Spin-Sonics: Schallwelle lässt Elektronen kreisen

Forscherteam weist “Spin” einer Nanoschallwelle erstmals in Echtzeit nach / Brückenschlag zwischen Akustik und Optik

Einem deutsch-amerikanischen Forscherteam aus Augsburg, Münster, Edmonton, West Lafayette und München ist es gelungen, die rollende Bewegung einer Nanoschallwelle nachzuweisen, die der berühmte Physiker und Nobelpreisträger Lord Rayleigh 1885 vorhersagte. In einer in der Fachzeitschrift “Science Advances” veröffentlichten Studie verwenden die Wissenschaftlerinnen und Wissenschaftler einen Nanodraht, in dessen Inneren Elektronen durch den “Spin” der Schallwelle auf Kreisbahnen gezwungen werden. Dieses nun nachgewiesene Phänomen kann beispielsweise in akustischen Quantentechnologien oder in sogenannten phononischen Bauelementen, mit denen sich die Ausbreitung akustischer Wellen kontrollieren lässt, gezielt verwendet werden.

Schallwellen sind wahre Tausendsassa in der modernen Nanophysik, da sie nahezu jedes andere System beeinflussen können. Beispielsweise sorgen winzige mikroakustische Chips in Computern, Smartphones oder Tablets dafür, dass die empfangenen “Wireless”-Funksignale elektronisch weiterverarbeitet werden. Trotz vielseitiger Einsatzgebiete verstehen selbst Experten die grundlegenden Eigenschaften der Nanoschallwellen immer noch nicht vollständig.

“Seit Lord Rayleighs bahnbrechender Arbeit war klar, dass es Schallwellen gibt, die sich an der Oberfläche von Festkörpern ausbreiten und die eine ganz charakteristische elliptische, rollende Bewegung aufweisen,” erläutert Physik-Professor Dr. Hubert Krenner, der die Studie an der Universität Augsburg leitete und jüngst an die Westfälische Wilhelms-Universität (WWU) Münster wechselte. “Die direkte Beobachtung dieses transversalen Spins, wie wir Physiker diese Bewegung nennen, ist uns nun bei Nanoschallwellen endlich gelungen.”

In ihrer Studie verwendeten die Forscher einen hauchdünnen Nanodraht, der auf einen piezoelektrischen Kristall – Lithiumniobat – aufgebracht wurde. Dieser Kristall verformt sich beim Anlegen einer elektrischen Spannung. So kann mit kleinen Metallelektroden, sogenannten Schallwandlern, eine Schallwelle auf dem Kristall erzeugt werden. Umgekehrt erzeugt die Schallwelle ein elliptisch rotierendes (gyrierendes) elektrisches Feld. Dieses zwingt wiederum die Elektronen im Nanodraht auf Kreisbahnen. Prof. Zubin Jacob, der an der Purdue University forscht, ist begeistert: “Wir kannten dieses Phänomen bis jetzt für Licht. Nun ist es uns gelungen zu zeigen, dass dies ein fundamentaler Effekt ist, der auch bei anderen Arten von Wellen wie Schall in einem technologisch so relevanten Material wie Lithiumniobat auftritt.”

Die vorgestellten Forschungsergebnisse sind ein Meilenstein, da der erstmals beobachtete transversale Spin gezielt zur Kontrolle von Nanosystemen oder für die Informationsübertragung verwendet werden kann. Maximilian Sonner, Doktorand am Augsburger Physikinstitut, erläutert: “Wir beobachten die Bewegung von Elektronen in den an der TU München hergestellten Nanodrähten durch das von den Elektronen abgestrahlte Licht.” Seine Kollegin Dr. Lisa Janker ergänzt: “Wir verwenden hier ein extrem schnelles Stroboskop, mit dem wir in der Lage sind, diese Bewegung auch bei hohen Frequenzen bis in den Gigahertz-Bereich quasi in Echtzeit zu beobachten.”

Dr. Farhad Khosravi, der seine Doktorarbeit vor Kurzem in der Arbeitsgruppe von Zubin Jacob abgeschlossen hat, sagt: “Ich konnte meine Berechnungen für Licht direkt auf die Rayleigh-Schallwelle übertragen. Es war zwar seit Langem bekannt, dass Licht und Schallwellen ähnliche Eigenschaften besitzen. Nichtsdestotrotz ist die Übereinstimmung phänomenal.”

Die Forscher sind überzeugt, dass deshalb ein ganz fundamentales physikalisches Prinzip zugrunde liegt. “Unsere Arbeit ist nur ein erster, aber entscheidender Schritt,” unterstreicht Hubert Krenner. Das Team forscht mit Hochdruck daran, den transversalen Spin von Schallwellen mit dem anderer Wellen zu koppeln. “Nun gilt es”, sagt Zubin Jacob, “diesen transversalen akustischen Spin gezielt auszunutzen, um mit ihm beispielsweise optische Quantensysteme oder den Spin von Licht zu manipulieren.”

Das Projekt erhielt in Deutschland finanzielle Unterstützung von der Deutschen Forschungsgemeinschaft (DFG) über die Projekte KR3790/6-1 und KO4005/6-1 und in den USA über das “DARPA Nascent Light-Matter Interactions”-Programm.

Originalveröffentlichung:

M. M. Sonner, F. Koshrawi, L. Janker, D. Rudolph, G. Koblmüller, Z. Jacob, H. J. Krenner (2021): Ultrafast electron cycloids driven by the transverse spin of a surface acoustic wave. Science Advances 7; DOI: 10.1126/sciadv.abf7414


Links:


Quelle: Pressemitteilung / Pressestelle der Universität Münster (upm)