
United States Patent (19)
Gerlach, Jr. et al.

||||||IIIHIIIHIII
US005317732A

[11] Patent Number: 5,317,732
(45) Date of Patent: May 31, 1994

(54)

(75)

(73)

(21)
22
(51)
52)

(58)

(56)

SYSTEM FOR RELOCATING A
MULTIMEDIA PRESENTATION ON A
DIFFERENT PLATFORM BY EXTRACTING
A RESOURCE MAP IN ORDER TO REMAP
AND RELOCATE RESOURCES

Inventors: John D. Gerlach, Jr., Falls Church,
Va.; Michael E. Weiblen, College
Park, Md.

Assignee: Commodore Electronics Limited,
Nassau, The Bahamas

Appl. No.: 692,230
Filed: Apr. 26, 1991

Int. Cl. G06F 13/00; G06F 15/40
U.S. Cl. 395/600; 364/DIG. ;

364/222.81; 364/226.6; 364/260.4; 364/282.1;
364/281.1; 395/650, 395/159

Field of Search 364/419, 513; 370/80;
358/140; 395/600, 650, 159

References Cited

U.S. PATENT DOCUMENTS
4,315,315 2/1982 Kossiakoff 364/300
4,449,180 5/1984 Ohshima et al. ... 364/147
4,455,619 6/1984 Masui et al.
4,536,840 8/1985 Borta
4,546,435 10/1985 Herbert et al. .
4,569,019 2/1986 DiOrio et al. ..
4,644,423 2/1987 Buntsis et al. ..
4,656,603 4/1987 Dunn
4,681,548 7/1987 Lemelson 334/311
4,689,022 8/1987 Peers et al...... ... 434/307
4,723,210 2/1988 Barker et al. 364/300
4,734,764 3/1988 Pocock et al. 358/86
4,736,320 4/1988 Bristol 364/300
4,739,477 4/1988 Barker et al. 364/300
4,779,080 10/1988 Coughlin et al. 340/712
4,813,013 3/1989 Dunn 364/900
4,821,211 4/1989 Torres 364/521
4,821,220 4/1989 Duisberg 364/578
4,827,404 5/1989 Barstow et al.
4,860,204 8/1989 Gendron et al. ..
4,872,167 10/1989 Maezawa et al. ..
4,885,717 12/1989 Beck et al. 364/900
4,893,256 l/1990 Rutherfoord et al. 364/518
4,899,136 2/1990 Beard et al. 340/706

... 364/200

... 364/300
... 371/19

350
951
952

PARENT LIST
CHDLIST
REFERENCEST
SPECIFICDATA

-900

: MODULE - E - 901
S ANEM - C1-902
3 MODULE. E2-503

PARENT LISF
CHILDLIST
REFERENCES
speciFICATA

PARENTIST
SPECIFICDATA

4,905,163 2/1990 Garber et al. 364/513
4,931,950 6/1990 Isle et al. 395/11
4,953,080 8/1990 Dysart et al. 364/200

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

WO88/07719 10/1988 PCT Int'l Appl. .
OTHER PUBLICATIONS

H. G. Okuno et al., “Firmware Approach To Fast Lisp
Interpreter,” ACM Journal, 1987, pp. 1-11.
H. G. Okuno et al., "TAO: A Fast Interpreter-Cen
tered System on Lisp Machine ELIS,” ACM Journal,
1984, pp. 140-149.
R. P. Ten Dyke et al., "Object-Oriented Program
ming,” IBM Systems Journal, vol. 28, No. 3, 1989, pp.
465-478.
Dr. Dobbs Journal, Dec. 1989 (4 Advertisments).
IBM'Using Disk Operating System Version 4.00, First
Edition (Jul. 1988) pp. 29-31; Backup.

(List continued on next page.)
Primary Examiner-Thomas C. Lee
Assistant Examiner-Wayne Amsbury
Attorney, Agent, or Firm-Finnegan, Henderson,
Farabow, Garrett & Dunner
57) ABSTRACT
A process performed in a data processing system in
cludes receiving an input selecting one of the plurality
of multimedia presentations to be relocated from the
first memory to the second memory, scanning the
linked data structures of the selected multimedia presen
tation to recognize a plurality of resources correspond
ing to the selected multimedia presentation, and gener
ating a list of names and locations within the selected
multimedia presentation corresponding to the identified
plurality of resources. The process also includes renam
ing the names on the generated list, changing the names
of the identified plurality of resources in the selected
multimedia presentation to the new names on the gener
ated list, and moving the selected multimedia presenta
tion and the resources identified on the generated list to
the second memory.

8 Claims, 48 Drawing Sheets
9.

5,317,732
Page 2

U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
5,010,500 4/1991 Makkuni et al. 395/155 Miastkowski, S., "Windows Shopping, Pricey and Ele
5,072,412 12/1991 Henderson, Jr. et al. ... 395/159 gant Multimedia Development", BYTE, vol. 15, No. 8,
5,084,813 1/1992 Ono "/99 Aug. 1990, pp. 114-115.
5,204,947 4/1993 B tein et al. 395/157
5,208,665 :3: E. . - so 3. Hirakawa, M. et al., IEEE Transactions On Software
5,208,745 5/1993 Quentin et al. 364/188 Engineering, "An Iconic Programming System," vol.
5,220,657 6/1993 Bly et al.............................. 395/425 16, No. 10, Oct. 1990, New York, N.Y., pp. 1178-1184. Bly et al.

U.S. Patent May 31, 1994 Sheet 1 of 48 5,317,732

FIG. 1

U.S. Patent May 31, 1994 Sheet 2 of 48 5,317,732

FIG. 2

200 220
APPLICATIONS

MOVER

230
DATABASE
EDITOR

240

210 EVALUATOR
FLOW
EDITOR 250

OBJECT
EDITOR

260
VIDEODSC
CONTROLLER

270
HELP

SYSTEM

280
EXPRESSION

EDITOR

Sheet 4 of 48 5,317,732 May 31, 1994 U.S. Patent

3][100W

0
G

TOHINO) |-

U.S. Patent May 31, 1994 Sheet 5 of 48 5,317,732

A/6. 54
500

50 506 507 503 505
502 / / A/

CONTROL- & 3. 8. G- S
CALL C GO TO GOTO 00P E LOOP F THEN IFELSE

A/6. 5A
. SIO -51 OU N. 53 INTERRUPT i. E. 52

KEYBOARD MOUSE REMOVE

A/6. 56
520

.52 522 523 524 525 526 527
DATA- N. YKv E - - - S C (2) DS a

SELECT R/W DELETE WARIABLES OUTPUT FORM E FORM

A/6 5A

534 30 - 535
WAT-o- (?" 6" () ()

WAT CONDITION KEYBOARD MOUSE DELAY

A/6. 5A
540 53. 3., 543, 34 345 546547 548 549

... - arra - - N. S. Els w-ÉE3 II (A&E),
SCREEN SOUND SPEAK MUSIC GFX BRUSH VIDEO ANM TEXT

A/6. 5A
557

a 455 532 A333 554 c
MODULE -a- (XX A. (t

MODULE SUBROUTINE OUT RETURN EX RESOURCE

U.S. Patent May 31, 1994 Sheet 7 of 48 5,317,732

FIG, 7A
FIG. 7B

PARENT
(XX 1705 PARENT (ITERATIVE)
AA MODULE 1735

sci, ySCREEN
1740

(i. 1720 BRUSH
J/WGFX

N - 745 K/1 AD WATMOUSE ()’ BRUSH

FIG. 7C FIG. 7D
SBLNG R

S - 750 PARTNE
N - - - - - - - - -

& ANIMATION -770
2) BRUSH 1 1755

SPEECH 1775

1760
WAIT MOUSE 1780

WAIT MOUSE

U.S. Patent May 31, 1994 Sheet 8 of 48 5,317,732

FIG. 8

Transitions

895 N865 870 875 880

U.S. Patent May 31, 1994 Sheet 10 of 48 5,317,732

950
951
952
952

942

943

901

PARENT LIST
CHILD LIST 902
REFERENCE LIST
SPECIFICDATA

940

NEXT 2.
PAUSE: ON

NEXT.
EXPRESSION Log P:3
"WAR 12"

FILE: "EXAMPLE.
ANMFILE" PARENT LIST

CHILD LIST
REFERENCE LIST
SPECIFICDATA

NEXT: 2)
EXPRESSION
"BRANCH. TRUE"

NEXT: 2)
EXPRESSION
"WAR2-WAR 1 - 4"

PARENT LIST

SPECIFICDATA

NEXT: 2)
PAUSE: OFF
START
FEMALE

STRING THIS ISATEST

PARENT LIST

EXPRESSION PECIFICDATA: 2 945 - BRANCH-TRUE" SPECIFIC

U.S. Patent May 31, 1994 Sheet 11 of 48 5,317,732

FIG. 10

220
APPLICATIONS

MOVER

230
DATABASE
EDITOR

240

OBJECT
EDTOR

VIDEODISC
CONTROLLER

HELP
He alma gue was mus spun amus an an amas a SYSTEM

280
EXPRESSION

EDITOR

KEYBOARD

115

U.S. Patent May 31, 1994 Sheet 12 of 48 5,317,732

FIG 11A
CSTARTD 1100

1101
OPEN EDT SCREEN

1103
DISPLAY MAN MENU OF CONS

1105
OPEN "UNTITLED FLOW WINDOW

AWAT USERACTION

ICON DRAGGED FROM WINDOW AND
DROPPED ON TOP OF TRASHCAN

N O

C O N D R O P P E D NT O W N D O W

OPENANOTHER EDIT WINDOW AND DISPLAY IT SMALLER
AND IN FRONT OF ALL OTHER WINDOWS

CKON CLOSE-WINDOW. GADGET C
NO GE)
CHOOSE 'OUT OPTION FROMMENU

YES O

U.S. Patent May 31, 1994 Sheet 13 of 48 5,317,732

FIG. fB

(A) 100 (CONT.)
140

N COLLECT MODE
NO YES

(a) FIG. 11C

141
CLICKN BOX CONTAINING ANICON

NO 1142 YES
IS ANY CON SELECTED

NO 1143
UNSELECT CURRENT CON

144
IS THIS ICONSELECTED
NO

1145
WAS CLICKINSIDE THE

DOUBLE-CLICKTIME LIMIT

YES
1146

NTIATEREOUESTER
HANDLER WITH THIS ICON

1147
UNSELECT CURRENT

ICON; SELECT THIS ICON CEXIT)

148
DRAGGING ACTION STARTED

1149
CREATE DRAGGABLE OBJECT
MOVE WITH MOUSE UNTIL

BUTTON RELEASED

U.S. Patent May 31, 1994 Sheet 14 of 48 5,317,732

FIG 11C (A) 100 (CONT.)
1150

DETERMINE THE LOGICAL MINIMUMAND MAXIMUM NUMBER OF CONS
COLLECTABLE IN BOTH THE HORIZONTAL AND VERTICAL DIRECTIONS

1151
DRAW / REDRAW COLLECTION RECTANGLE FOLLOWING MOUSE

MOVEMENTS UNTIL MOUSE BUTTON IS RELEASED
1152

PRESENT USERVERIFYING THAT COLLECTION OF SPECIFIED
REGIONS TO BE PREFORMED

1153
COLLECT CONS

NO 1154

CREATE PARENT MODULE CON; INSERT
BEFORE FIRSTICON INSELECTED GROUP;
MOVE ALL SELECTEDICONS TO CHILDREN

OF NEWMODULE CON.

FIG. 11G 1100 (CONT.)
1.191

WINDOWEDITED SINCE LAST SAVE
NO

PRESENT USER WITH 'CLOSE', 'SAVE AND CANCEL' OPTIONS

193
USER SELECTED "CANCEL'

YES 1194
USER SELECTED "SAVE

195
SAVE APPLICATION TO DISK

CLOSEWINDOWS 1196

U.S. Patent May 31, 1994 Sheet 15 of 48 5,317,732

FIG. 1 1D

100 (CONT.)
160

CURRENT CONAPARENT

1161
CURRENT CON'S CHILDREN VISIBLE

YES 1162
FIND FIRST CHILD CON

1163
MARK CONAS
NON-DISPLAYED

FIND NEXTSIBLING ICON
NO YES

1165
FIND FIRST CHILD CON

1166
MARK CONAS DISPLAYED

FIND NEXT SIBLING CON
YES

REDISPLAY WINDOW

U.S. Patent May 31, 1994 Sheet 16 of 48 5,317,732

FIG. 11E 1100 (CONT)
(C)

1170

REMOVE CON FROMAPPLICATIONSTRUCTURE

1171
CON A PARENT

NO

1172
FIND FIRST CHILD CON

REMOVE CON FROM
APPLICATIONSTRUCTURE

CONAPARENT
YES

RECURSIVE

FIND NEXT SBLING CON
YES

1176
ANY REMAINING CONS VISIBLE IN WINDOW

YES 1177

ANY CONS REMAINING IN APPLICATION

178
CHANGE WINDOW'S POSITION
NAPPLICATION TOWIEWAT

LEAST 1 ICON

CREATE MODULE CON AND ADD
TO APPLICATION TO DUPLICATE
'UNTITLED'APPLICATION STATUS

REDISPLAY WINDOW 1180

U.S. Patent May 31, 1994 Sheet 17 of 48 5,317,732

FIG. 11F 1100 (CONT.)

118
ICON COMING FROMANOTHER EDIT WINDOW,
OR BEING COPIED FROMANOTHER PART OF

SAME EDT WINDOW

MAKE COPY OF CONAND ALL TS
CHILDREN FOR INSERTION INTO

THIS WINDOW

11.83
VALID PLACEMENTASA CHILD, MATE OR SIBLING

NO 184

CON BEING MOVED FROMANOTHERPART OF
SAME EDT WINDOW

1185
NEWPOSITION ADECENDENT OF ORIGINAL

YES
1186

REMOVE CON FROM
ORIGINAL POSITION

1187
ADD NEW CON AT REOUESTED POSITION

SADDEDICON A NEW REFERENCING CON
NO

ADD REFERENCING PLACEHOLDER CONAS TS MATE

IFICON WAS COPIED FROM THIS OR
ANOTHER WINDOW, DELETE ICON AND

ANY CHILDREN

U.S. Patent May 31, 1994 Sheet 18 of 48 5,317,732

FIG, 12

ARE WE CU

SSELECTED CON AWALD REFERENCE
PARTNER FOR ORIGINATING CON
YES NO 1230

PRESENT USER WITH MESSAGE

USER WANTS TO CONTINUE REFERENCENG R
NO

CLEAR REFERENCING-SELECT STATUS

USER WANTS TO REFERENCE THIS CON

COMPLETE REFERENCING CLEAR
REFERENCING-SELECT STATUS

USER WANT TO CONTINUE REFERENCING

NO Easteffa " CLEAR REFERENCING-SELECT STATUS

265
S THIS A CONDITIONAL CON
NO YES

INTATE EXPRESSION EDTOR

1275
DOES THIS icon HAVE AREOUESTER

NO

CALL ROUTINE TO HANDLE
REOUESTER OPERATION

Sheet 19 of 48 5,317,732 May 31, 1994 U.S. Patent

S??OTN???MTO ??]]
[7]

088

U.S. Patent May 31, 1994 Sheet 20 of 48 5,317,732

START FIG. 14
1405

400 OPEN WINDOW

1407, 1409 sess ES DISPLAYINCOMINGSTRING
NO

CLICK
ON CANCEL BUTTONOR

CLOSEWINDOW
GADGE

NO

A) CLOSE WINDOW
B) DESTROYEDITED STRING
C) EXIT RETURNING NOTHING

A) CLOSE WINDOW
B) EXIT RETURNING EDITED

STRING

1441

U.S. Patent May 31, 1994 Sheet 21 of 48 5,317,732

OBJECT
CREATION, SPE
CIFICATION, AND

EDITING

260

VIDEODSC
CONTROLLER

OBJECT 270
REOUESTER

HELP
HANDLER SYSTEM

280

EXPRESSION
EDITOR

U.S. Patent May 31, 1994 Sheet 22 of 48 5,317,732

FIG. 16A

CSTARD 1600
1601

ENTERED THROUGH EDIT WINDOWICON
NO

1602
SEARCHUP FROM CON TO FIND ANY

SCREEN DEFINITION CON
1

SCREEN CON FOUND 603

YES 1604
OPEN SCREEN DEFINED BY CON 609

OPENSTANDARD EDIT SCREEN

1610
ANY OBJECTS DEFINED

BY THIS CON
NO

INFORM USER THATEDITOR
WAS ENTERED

1605
PICTURE WAS SPECIFIED

1606
USER WANTS IT DISPLAYED

1607
DISPLAY PICTURE

1608
DISPLAY CON'S OBJECTS

1612
AWAIT USERACTION

CHOOSE SCREEN DEFINITION FROMMENU
NO YES

1613

1614

PRESENTSCREEN DEFINITION REQUESTER;
ALLOW USER TO SPECIFY SCREEN SETTINGS:

DISPLAYNEWSCREEN

CHOOSE SCREEN PALETTE FROMMENU
NO YES

PRESENT SCREEN PALETTEREOUESTER;
ALLOW USER TO SPECIFY SCREEN COLORS:

DISPLAY SCREEN WITH NEWPALETTE

U.S. Patent May 31, 1994 Sheet 23 of 48 5,317,732

FIG. 16B
1600 (CONT.)

1617
CHOOSE WIDEODISC FROMMENU

NO

CHOOSE LOAD FROMMENU
NO YES

PRESENT LOADDISPLAY OBJECTS FILEREQUESTER;
ALLOW USER TO SELECT OBJECTSFILE;

LOAD AND DISPLAY OBJECTS FROM FILE ERASING
ANY EXISTING OBJECTS

1624
CHOOSE CLEAR OBJECTS FROMMENU
NO

1625
OBJECTS EXIST ON SCREEN

N
O 1626

CONFIRM USER WISHES TO CONTINUE

1627
ERASE ALLEXISTING

OBJECTS

CHOOSE PREVIEW FROMMENU
NO

ENTER PREVIEW MODE; DISPLAY OBJECTS ASIF
RUNTIME MODE: RESPOND TOUSER INPUT UNTIL

RIGHT MOUSE BUTTON DOWN

CHOOSE REDISPLAY FROMMENU

REDISPLAY SCREEN AND ALLEXISTING OBJECTS

U.S. Patent May 31, 1994 Sheet 24 of 48 5,317,732

C) FIG. 16C
1632

160 (CONT) (E
CHOOSE SAVE FROMMENU

NO
1633

SCREEN HAS BEEN PREVIOUSLY SAVED
UNDER A FLENAME

1635
PRESENTSAVE DISPLAY OBJECTS FILE REOUESTER;

ALLOW USER TO SELECT OBJECTS FILE

1634
SAVE OBJECTS TO FILE NAME FILENAME

CHOOSE SAVE AS FROMMENU
NO

PRESENTSAVE DISPLAY OBJECTSFILEREQUESTER;
ALLOW USER TO SELECT OBJECTS FILE;

SAVE OBJECTS TO FILE

CHOOSE HELP FROMMENU

INTATE HELP DISPLAY

CHOOSE ADD (OBJECT TYPE) FROMMENU
NO

NO

(A)(OBJECT TYPE)-> FIG.16G
1641

CHOOSE ARRANGE FROMMENU
NO

1642
CHOOSE COPY FROMMENU

NO

1643
CHOOSE DELETE FROMMENU

NO

REMOVE SELECTED OBJECT FROM DISPLAY LIST AND SCREEN
1645

CHOOSE DEPTH - FRONT FROMMENU
NO YES 1646

REPOSITION SELECTED OBJECTAT FRONT OF DISPLAY LIST

U.S. Patent May 31, 1994 Sheet 25 of 48 5,317,732

FIG, 16D

(E) 1600 (CONT.) GE

1647
CHOOSE DEPTH-RAISE FROMMENU
NO YES 1648

RAISE SELECTED OBJECT ONE POSITION ABOVE
TSCURRENT POSTION IN DISPLAY LIST

1649
CHOOSE DEPTH. LOWER FROMMENU
NO 650

LOWER SELECTED OBJECT ONE POSITION BELOW
ITS CURRENT POSITION IN DISPLAY LIST

CHOOSE DEPTH - BACK FROMMENU
NO

REPOSITION SELECTED OBJECTAT END OF
DISPLAY LIST

CHOOSE INFO FROMMENU
NO

INITIATEREOUESTER HANDLER FOR SELECTED OBJECT

CHOOSE MOVE FROMMENU
NO

1656
CHOOSE SELECT - FRONT FROMMENU
NO YES 1657

MAKE THE FIRST OBJECT IN THE DISPLAY LIST
THE SELECTED OBJECT

1658
DSPLAY SELECTED OBJECT N TSSELECTED STATE

1659
CHOOSE SELECT - NEXT FROMMENU
NO YES

SELECT THE OBJECT IMMEDIATELY AFTER THE
SELECTED OBJECT N THE DISPLAY LIST

1661
CHOOSE SELECT - PREVFROMMENU
NO YES

SELECT THE OBJECT IMMEDIATELY BEFORE THE
SELECTED OBJECT IN THE DISPLAY LIST

U.S. Patent May 31, 1994 Sheet 26 of 48 5,317,732

FIG. 16E
1600 (CONT)

1663
CHOOSE SIZE FROMMENU -

NO

1664
LEFT MOUSE BUTTON DOWN

NO

665
R KEY PRESSED

NO YES

(RECTANGLE 665 (a) ENEE-FIG.16G
PKEY PRESSED

NO YES

(POLYGON
1666 (a) oEYE-FIG.166

L KEY PRESSED
NO YES

E.---> FIG.16G 1667 (a) OBJECTYPE)
C KEY PRESSED

NO YES
(CIRCLE GA) OBEC TYPE) -o-FIG. 16G

1668
E KEY PRESSED

NO YES
(ELLIPSE G)oScies--FIG.16G 1669

T KEY PRESSED
NO YES

(TEXTNARIABLE
1670 GSSEFE-FIG.16G

BKEY PRESSED
NO YES

(BRUSH
1671 G) OBJECTYPE) F.G. 16G

KEY PRESSED
NO YES

(INPUTFIELD (A) OBJECT TYPE) -o-FIG.16G

U.S. Patent May 31, 1994 Sheet 27 of 48 5,317,732

FIG. 16F
C) 1600 (CONT.) G

1672
WKEY PRESSED

NO

(TEXT WINDOW G)'EENS-FIG. 16G
SPACE BAR PRESSED

NO

DUPLICATE LAST ACTION TAKEN

CHOOSE EXT FROMMENU
YES NO

1676
ENTERED FROM PULL DOWNMENU
NO

1677
DISPLAY OBJECTS HAVE BEEN MODIFIED
WITHOUT CHANGES BEING SAVED TO FILE

1678
USER WISHES TO SAVE CHANGES

1679
SAVE OBJECTS TO FILE

U.S. Patent May 31, 1994 Sheet 28 of 48 5,317,732

FIG. 16.G
1600 (CONT.)

(A)(OBJECT TYPE)
1701

OBJECT TYPE IS POLYGON
NO YES

1703
AWAT USERACTION

1704
RIGHT MOUSE BUTTONDOWN

NO YES

1705 CEXITD
LEFT MOUSE BUTTON DOWN

NO YES

AWAT USERACTION

MOUSE MOVED
NO YES

1708
ORAWRUBBER BAND LINES DEFINING OBJECT

PLACEMENT AND SIZE

1709
RIGHT MOUSE BUTTON DOWN

YES

1710 GExid
LEFT MOUSE BUTTONUP

YE 1711 S

ALLOCATE OBJECT OF OBJECT TYPE DISPLAY
OBJECT ON SCREEN

CEX)

U.S. Patent May 31, 1994 Sheet 29 of 48 5,317,732

FIG. 16H

1600 (CONT.) (a) (ADD POLYGON OBJECT TYPE)

AWAT USERACTION

LEFT MOUSE BUTTON DOWN
NO

DRAW POINT A MOUSE POSITION

MOUSE MOVED

DRAW RUBBER BAND LINE FROM LAST
POINT TO MOUSE POSITION

RIGHTMOUSE BUTTON DOWN
NO

MORE THAN TWO POINTS HAVE BEEN DRAWN

ALLOCATE POLYGON OBJECT:
DISPLAY OBJECT ON SCREEN

U.S. Patent May 31, 1994 Sheet 30 of 48 5,317,732

FIG. 16
600 (CONT. (ARRANGEMENU OPTION) 1600 (CONT.)

AWAT USERACTION

LEFT MOUSE BUTTON DOWN OVER OBJECT
NO

FIRST TIME

POSITION OBJECT UNDER MOUSE AS
FIRST OBJECT N DISPLAY LIST

POSITION OBJECT UNDER MOUSE
AFTER THE LAST OBJECT ARRANGED

RIGHT MOUSE BUTTON DOWN
YES NO

U.S. Patent May 31, 1994 Sheet 31 of 48 - 5,317,732

FIG. 16.J.
1600 (CONT.)

AWAT USERACTION

174
RIGHT MOUSE BUTTON DOWN

NO YES

1742
LEFT MOUSE BUTTON DOWN
NO YES

1743
BEGINDRAGGING MAGE OF THE

SELECTED OBJECT

1744
LEFT MOUSE BUTTONUP

NO YES

ALLOCATE A COPY OF THE SELECTED OBJECT:
ADD COPY OF SELECTED OBJECT TO THE FRONT

OF DISPLAY LIST; GIVE OBJECT SCREEN
COORDINATES WHERE IMAGE WASDRAGGED;
MAKE THIS OBJECT THE SELECTED OBJECT:

DISPLAY OBJECT

1746

REDRAW OBJECT TO
CURRENT POSITION

U.S. Patent May 31, 1994 Sheet 32 of 48 5,317,732

FIG. 16K
1600 (CONT.)

AWAT USERACTION

RIGHT MOUSE BUTTONDOWN
NO

LEFT MOUSE BUTTON DOWN
NO

BEGIN DRAGGNG iMAGE OF THE
SELECTED OBJECT

LEFT MOUSE BUTTONUP
NO

GIVE SELECTED OBJECT SCREEN COORONATES
WHERE IMAGE WASDRAGGED;

DISPLAY OBJECT N TSNEWPOSITION
REDRAW OBJECTAT
CURRENT POSITION

U.S. Patent May 31, 1994 Sheet 33 of 48 5,317,732

FIG. 16L
(SIZE MENUOPTION) 1600 (CONT.)

AWAT USERACTION

RIGHT MOUSE BUTTON DOWN
NO

LEFT MOUSE BUTTON DOWN
NO

DRAWRUBBER BAND LINES OUT
LINING SIZE OF SELECTED OBJECT

MOUSE MOVED
NO

SIZE AND REDRAWRUBBER BAND LINES FROM
SELECTED OBJECTS xy1 POINT TO

MOUSE POSITION

U.S. Patent May 31, 1994 Sheet 34 of 48 5,317,732

FIG. 16M
(F) (LEFT MOUSEBUTTONDOWN) (N)

1760
MOUSE OVER OBJECT

NO YES

1765
1STHERE A SELECTED OBJECT
NO

UNSELECT SELECTED
OBJECT

1761
OBJECTS SELECTED OBJECT

1762
WAS CLICK NSIDE THE DOUBLE

CLICKTIME LIMIT

NTATE REOUESTER
HANDLER FOR THIS OBJECT

UNSELECT SELECTED OBJECT:
SELECT THIS OBJECT

U.S. Patent May 31, 1994 Sheet 35 of 48 5,317,732

DATABASE FILE
CREATION,
LOADING,
DELETION

KEY SPEC
FICATION
EDITOR

RECORD
VIEWER/
EDITOR

270

HELP
SYSTEM

Sheet 36 of 48 5,317,732 May 31, 1994 U.S. Patent

988 || 868||

Õ??I

81 OH

Sheet 37 of 48 5,317,732 May 31, 1994 U.S. Patent

088

[5]
039949

U.S. Patent May 31, 1994 Sheet 39 of 48 5,317,732

STAR FIG. 21A
201 2100

OPEN WINDOW

NT HARDWARE
2103

NIT OK 2104
YES NO PRESENTERROR MESSAGE WITH

ABORTAND RETRY OPTIONS
207 2105

ENTER FROM CON USER SELECT RETRY
REOUESTER

NO YES
NO 2106

2108
TAKE EXISTING CON INFORMATION
AND SET INTIAL STATE OF CON

CONTROLLER
2109

SET PLAYER INTO
PROPER MODE, IFNONE
SEARCH TO FRAME 1

21

NO YES

USER CLICKED INSIDE
BUTTONOR GADGET
YES NO

USER CLICKED
HELP BUTTON

NO YES

2115
2116

NO YES GET CURRENT WIDEO FRAME
STORE AND DISPLAY

U.S. Patent May 31, 1994 Sheet 40 of 48 5,317,732

FIG 21B
2100 (CONT.)

CLICKON ONE OF
STILL,

PLAY, PLAY-REV,
STEP, STEP-REV,
SCAN, SCAN-REV
SLOW, SLOW-REV,
FAST, FAST-REV,

218
SEND APPROPRIATE COMMAND

TOVIDEODSC DRIVER
2119 VIDEO,

AUDIO1, AUDIO2, IF PLAY, SLOW, OR FAST COMMAND,
INDEX BUTTONS UPDATE FRAME DISPLAY UNTIL PLAYER'S

ACTION CHANGED OR STILLED
NO

CLICK ON ACTION
MULT-STATE BUTTON
NO ROTATE SELECTION BETWEEN

PLAY'SEARCH AND'AUTOSTOP'

UNGHOST "START
AND STOP' BUTTONS

UNGHOST ONLY "FRAME BUTTONS

CLICK ON'START.''STOP'
OR 'FRAME BUTTONS
NO ALLOW USER TO SELECT 'ENTER

FRAME,' 'CURRENT FRAME. "M1, OR'M2

228 STORE AND DISPLAY CHOSEN VALUE
CLICK "PREVIEW

BUTTON 2129
NO YES ACTION MULT-STATE GADGETAND

ASSOC. SETTINGS PROPERLY DEFINED

PERFORMACTION DESCRIBED BY ACTION
2131 MULTI-STATE AND ASSOC. BUTTONS

CLICK ON "CANCEL'
BUTTON OR CLOSE
WINDOW. GADGET 2132

CLOSE WINDOW, IF ENTERED FROMAN
ICON, DO NOT MODIFY ITS DATA

NO

CLICK ON 'OK
NO Y ES CLOSE WINDOW, IF ENTERED FROMAN

ICON, UPDATE ITSDATA TO REFLECT
CURRENT SETTING OF ACTION

MULT-STATE AND ASSOC. BUTTONS

U.S. Patent May 31, 1994 Sheet 41 of 48 5,317,732

FIG. 21C

2100 (CONT.)

270

CONTROLLER WINDOW
CURRENTLY ON-SCREEN
YES 2172

OPEN WINDOW TO LAST
POSITION I SIZE

MOUSE INSIDE WINDOW

YES NO

278

WINDOW CURRENTLY
FULL-SIZE

YES NO

CLOSE WINDOW FOR FULL
SCREEN VIDEO VIEWING

RESIZE WINDOWFULL SIZE,
REPOSITIONING IFNEEDED

TO FIT ON-SCREEN

SHRNK WINDOW TO
SMALL SIZE

U.S. Patent May 31, 1994 Sheet 42 of 48 5,317,732

FIG.22

MOVING
FROM HARD DISK SOURCE

TO FLOPPY

EXECUTE
APPLICATION MOVER
CREATE OPERATION

EXECUTE
APPLICATIONMOVER
INSTALL OPERATION

FIG. 23D
2300 (CONT.)

G.) (N) (O)
2345

SHOULD LAST PARENT BE
RE-EVALUATED (LOOPACTION)
NO

2348

U.S. Patent May 31, 1994 Sheet 43 of 48 5,317,732

CSTARD FIG. 23A
2301

NIT EVALUATION ENVIRONMENT 2300
2302

OPEN INITIAL PRESENTATIONSCREEN
2303

FIND FIRST CON
NO YES

CALLICON
NO 2305

2306
FINDSUBROUTINE ON

CONDITIONAL CON

PUSHENODE TO
SAVE CURRENT STATE

CONDITION TRUE

COND GOTO CON

SETUP FOR EXECU
TION OF REFERENCED CON

GOTO CON

S REFERENCED CONACHILD OF ANY OF
THE EVENTS ON THE RUNTIME-RETURNSACK

YES

IS REFERENCED CONACHILD OF
CURRENT PARENT

YES
POP ENODE

REFERENCEDICON

(A)(B) (C) GDGK)

U.S. Patent May 31, 1994 Sheet 44 of 48 5,317,732

(A)(B) (C) FIG. 23B GDGK)
237 2300 (CONT.)

RETURNICON
NO 238

ARE WE INSIDEA SUBROUTINE

2322
EXIT LOOP OR

EXIT FORM ICON

2324
ARE WE INSIDEA LOOP/FORM

2327

2328

2329

(A). DOICONSACTIONS -> FIG.23E
2330

DDAN INTERRUPT OCCUR
NO

POP ENODE

S THIS ENODE THE SUBROUTINE
NO 2321

POPENODE TO RESTORE STATE BEFORE CALL

POPENODE

IS PARENT THE LOOP/FORM
NO

2331
PUSHENODE TO SAVE CURRENT STATE;
SETUPFOR INTERRUPTPROCESSENG;
PUSHENODE FOR INTERRUPT TRACKENG

2332
FIND INTERRUPTS FIRST CHILD

IS THIS CON A PARENT WITH CHILDREN
V THAT SHOULD BE EVALUATED IMMEDIATELY
O YES

(D) (E) (F) - (G) O

U.S. Patent May 31, 1994 Sheet 45 of 48 5,317,732

FIG, 23C

2334
2335 PUSHENODE FOR THIS PARENT

EXIT FLAGSET . FIND FIRST CHILD CON
NO YES

2336
SICON AN "FTHENELSE THAN HAD

ITS TRUE ACTION PERFORMED

FIND NEXT SIBLING CON

SICON AN"FTHENELSE
YES 2339

FIND NEXT SIBLNG CON

FIND NEXT SIBLING CON

U.S. Patent May 31, 1994 Sheet 46 of 48 5,317,732

FIG. 23E

(A) (PERFORMACTIONS OFICON) 2300 (CONT.)
2360

INTIAEACTIONS OF CON

2361
DOES CON WAIT FOR REACTION FROM USER

NO YES

AWAT USERACTION

HAS REOURED ACTION BEEN PERFORMED

HAS ACTION CAUSEDAN INTERRUPT

2365
IS PAUSE APPLICABLE TO CON
NO

SPAUSE SELECTED

AWAT USERACTION WHILE
MONITORING FOR COMPLETION

OFICON

HASCON COMPLETED

2369
HAS USER'S ACTION

CAUSEDAN INTERRUPT
NO

U.S. Patent May 31, 1994 Sheet 47 of 48 5,317,732

FIG. 23F
2300 (CONT.)

2380
ALLOCATE MEMORY FOR ENODE

SAVE CURRENT STATE TO NODE
CURRENT PARENT,
CURRENT ICON,

EVALUATOR STATE,
CURRENT LOOPWALUE

ADD THE RUNTIME-RETURNSTACK

FIG. 23G
2300 (CONT.)

2390
OVE TOP ENODE FROM RUNTIME-RETURN STACK
NO

REM

RESTORE FROM NODE
CURRENT PARENT,
CURRENTICON,

EVALUATORSTATE,
CURRENT LOOPWALUE

2392
CLEANUP ALL TRANSENT
ATTRIBUTES OF EVENT

MUST MORE ENCODES BE POPPED TO
REACH PROPER STATE (ELOOP,

RETURN, EFORM)

U.S. Patent May 31, 1994 Sheet 48 of 48 5,317,732

FIG. 24

2410

RECEIVE INPUT SELECTING CON

2420
GENERATING DATASTRUCTURE

ASSOCATED WITH SELECTED CON
NCLUDING ACTION IDENTIFIER

2430

DISPLAY SELECTED CON ON
DISPLAY SCREEN

2440

EVALUATE DATASTRUCTURE TO
PERFORMACTION REPRESENTED
BY ACTION IDENTIFIERIN DATA

STRUCTURE

5,317,732
1

SYSTEM FOR RELOCATING AMULTIMEDIA
PRESENTATION ON A DIFFERENT PLATFORM
BY EXTRACTING ARESOURCE MAP IN ORDER
TO REMAP AND RELOCATE RESOURCES

RELATED APPLICATIONS
This application is related to U.S. Ser. No.

07/691,865, now pending, entitled "METHODS AND
APPARATUS PROVIDING FOR A MULTIME
DIA AUTHORING AND PRESENTATION SYS
TEM,” U.S. Ser. No. 07/691,965, now pending, entitled
"METHODS AND APPARATUS PROVIDING
FOR AN CONIC PROGRAMMING AND DATA
BASE SYSTEM FOR MULTIMEDIA APPLICA
TIONS," and U.S. Ser. No. 07/691,984, now pending,
entitled "METHODS AND APPARATUS PROVID
ING FOR A PRESENTATION SYSTEM FOR
MULTIMEDIA APPLICATIONS, all filed the same
day as this application.

II. FIELD OF THE INVENTION
This invention relates to computer authoring systems

and, more particularly, to a computer system for creat
ing and presenting interactive multimedia presentations
and coursework. The invention facilitates the creation
and presentation of interactive multimedia presentations
and coursework using a graphic interface display. This
invention also relates to visual (or iconic) programming
systems and, more particularly, to a visual program
ming system for creating software applications.

III. BACKGROUND OF THE INVENTION
Interactive multimedia presentations and coursework

have become an important and effective method of 35
presenting information and teaching. Additionally, the
ability to program computers has also become an impor
tant skill which can take years to develop and master.
Therefore, conventional computer systems have been
developed which address each of these items. However,
no known conventional computer system addresses
both of these items.
A. Creation of Interactive Multimedia Presentations
When people communicate with each other, they use

many different methods to creatively convey informa
tion. Among these methods of communication are:
sound/music, pictures, words, numbers, animated se
quences, and full motion video. The use of these meth
ods in a presentation is typically referred to as the multi
media approach to communication.

Historically, multimedia presentations have been en
cumbered by the use of multiple technologies, such as
slide projectors, videotapes, and computer graphics.
But today, powerful computers offer a single delivery
system or platform for integrated multimedia presenta
tions. Thus, the speaker or teacher only needs to handle
a single piece of equipment. The difficulty then remains
in how the speaker or instructor is going to create and
present multimedia presentations using these powerful
computers.

In addition to creating an environment for multime
dia presentations, the computer has also made it possible
to create interactive presentations which means that the
viewer can actually participate in a presentation by
communicating with the computer. This has given rise
to a class of computer software applications called cour
seware which is a powerful teaching and training tool.
Again, the difficulty remains as to how the instructor is

5

O

5

20

25

30

45

50

55

2
to create and present these interactive multimedia pre
sentations.
One conventional computer system provides a

method for specifying and executing independent, mul
timedia tasks along a synchronized time-line in the form
of a matrix with the event elements making up the rows
and the time periods making up the columns. Although
this conventional system addresses the issue concerning
the time consuming task of creating the presentation,
this system fails to provide important interactive capa
bilities. Furthermore, this conventional system employs
a time-line for the control of events in a presentation.
Using a time-line requires the operator using such a
conventional system to duplicate events so that the
events can be executed in more than a single time per
iod. This requires additional computer resources which
is not desirable.

B. Visual Programming Systems and the Method of
Visually Programming an Interactive Multimedia Pre
sentation

In general, programming may be defined as specify
ing a method for doing something the computer can do
in terms the computer can interpret or understand.
There are many aspects of programming: the languages
and environment used for the specifications; the specifi
cations themselves; the determination of whether the
computer has executed a specification as expected; the
display of data involved in the execution of the specifi
cation; etc.

In the past, traditional programming systems in well
known or standard programming languages, e.g., FOR
TRAN or PL/1 have been used to program computers.
However, the problem with traditional programming
systems is that they require programmers to learn the
cryptic statements and rigid structure or syntax used by
standard programming languages. It is for this reason
that icons have been used to replace the cryptic state
ments of standard programming languages with visual
programming languages to develop visual program
ming systems.

Visual programming can be applied to all aspects of
programming. The important issue is creating meaning
ful graphic objects involved in an aspect of program
ning. This is addressed in the creation of visual pro
gramming systems.
One example of a visual programming system is Pict

which is designed to aid program implementation using
computer graphics. With Pict, users sit in front of a
color graphics display and communicate with the sys
tem throughout all phases of their work by pointing to
icons in a menu tree. Pict permits the user to select
images that visually represent the data structures and
variables needed; to draw the desired algorithm as a
logically structured, multi-dimensional picture; to
watch the program run; to see the results being gener
ated; and if the program isn't doing what is expected, to
see where and when the error occurs. Although Pict is
a visual programming system having control structures
for writing computer applications, Pict requires arrows
or series of arrows to show the flow of an application.

. Using arrows to show the flow of an application is

65

somewhat archaic, requires additional computer re
sources, and is not necessary to depict a program flow.
Although visual programming systems have been

developed, these systems fail to appreciate the need to
create a visual flowchart that symbolizes the logical
flow of the application (or presentation) being devel

5,317,732
3

oped. These visual programming systems also fail to
concentrate on the flowchart metaphor to remove the
tedium from program creation. These conventional
visual programming systems fail to permit the program
mer to assemble pictures, brushes, sounds, speech, ani
mations, music, video, text, and datafiles and control
them interactively via a mouse, keyboard, touchscreen,
or joystick. Therefore, a single visual programming
system which addresses all of these shortcomings of
conventional visual programming system is desirous.

V. OBJECTS AND SUMMARY OF THE
INVENTION

It is therefore an object of the present invention to
provide for a computer system in which users can cre
ate multimedia presentations and coursework.

It is a further object of the present invention to pro
vide for a visual programming system in which users
can create applications.

It is still a further object of this invention to enable
computer users to program interactive multimedia pre
sentations using a visual programming system.

It is yet another object of the present invention to
provide a method for designing presentations using
integrated computer technologies on a single platform
that enables the user to input, create, manipulate, and
output text, graphics, audio, and video utilizing a single
user interface.
To achieve the objects of this invention and attain its

advantages, this invention uses a data processing system
having a first memory and a second memory. The first
and second memories are adapted for storing a plurality
of presentations and a plurality of resources, and each
one of the plurality of presentations includes a plurality
of linked data structures which identify a plurality of
resources each having a name. A process performed in
the data processing system includes receiving an input
selecting a one of the plurality of presentations to be
relocated from the first memory to the second memory,
scanning the linked data structures of the selected pre
sentation to identify the plurality of resources identified
by the presentation, and generating a list of names and
locations within the selected presentation correspond
ing to the identified plurality of resources. The process
also includes renaming the names on the generated list,
changing the names of the identified plurality of re
sources to the new names on the generated list, and
moving the presentation and the resources identified on
the generated list to the second memory.
The accompanying drawings which are incorporated

in and which constitute part of this specification, illus
trate an implementation of the invention and, together
with the description, explain the principles of the inven
tion.

V. BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a block diagram illustrating the components

of an exemplary computer system or platform in which
the present invention may be implemented.

FIG. 2 is a block diagram which illustrates the soft
ware components of the preferred implementation of
the present invention.
FIG. 3 is an illustration of a flow window generated

by the flow editor of the preferred implementation of
the present invention.

FIG. 4 illustrates the main icon menu 400 of the pre
ferred implementation of the present invention.

10

15

20

25

30

35

45

SO

55

60

65

4.
FIG. 5A illustrates the control icon submenu of the

preferred implementation of the present invention.
FIG. 5B illustrates the interrupt icon submenu of the

preferred implementation of the present invention.
FIG. 5C illustrates the data icon submenu of the pre

ferred implementation of the present invention.
FIG. 5D illustrates the wait icon submenu of the

preferred implementation of the present invention.
FIG. 5E illustrates the AV icon submenu of the pre

ferred implementation of the present invention.
FIG. 5F illustrates the module icon submenu of the

preferred implementation of the present invention.
FIG. 6 illustrates the icon menu operational flow of

the main icon menu and the icon submenus illustrated in
FIGS. 5A-5F.
FIGS. 7A-7D illustrate the relationships used by the

preferred implementation to describe icons on the
GRID of the flow-window of FIG. 3.

FIG. 8 illustrates an example an icon requester using
the animation icon of FIG. 5E.
FIGS. 9A-9B illustrates a block diagrams of an exem

plary data structures associated with a presentation
created with the preferred implementation and which
may be evaluated with the preferred implementation.
FIG. 10 illustrates a block diagram of the flow editor

of FIG. 2 and the relationship of the flow editor to other
components of the computer system of FIG. 1 and the
preferred implementation of the present invention of
FIG. 2.
FIGS. 11A-11G are flow diagrams for the preferred

implementation of the edit window handler of FIG. 8.
FIG. 12 is a flow diagram for the preferred imple

mentation of the icon requester handler of FIG. 8.
FIG. 13 illustrates a preferred example of the expres

sion editor window displayed on the display screen
when the user enters the expression editor.
FIG. 14 is a flow diagram of the expression editor of

FIGS 2.
FIG. 15 illustrates a block diagram of the object edi

tor of FIGS. 2 and the relationship of the object editor
to other components of the computer system of FIG. 1
and the preferred implementation of the present inven
tion of FIG. 2.
FIGS. 16A-16M illustrate flow diagrams of the ob

ject editor of FIG. 15.
FIG. 17 illustrates a block diagram of the database

editor of FIGS. 2 and the relationship of the database
editor to other components of the computer system of
FIG. 1 and the preferred implementation of the present
invention of FIG. 2.

FIG. 18 is an illustration of the database window of
the database editor of the preferred implementation.

FIG. 19 is an illustration of the key window of the
database editor of the preferred implementation.

FIG. 20 is an illustration of the edit database window
of the database editor of the preferred implementation.

FIGS. 21A-21C are flow diagrams of the preferred
implementation of the videodisc controller of FIGS. 2
and 8.
FIG.22 is a flow diagram of the preferred implemen

tation of the applications mover of FIG. 2.
FIGS. 23A-23C are flow diagrams of a preferred

implementation of the evaluator of FIG. 2.
FIG. 24 illustrates a flow diagram of the authoring

system of the preferred implementation.

5,317,732
5

VI. DETAILED DESCRIPTION OF THE
PREFERRED IMPLEMENTATION

Reference will now be made in detail to the preferred
implementation of the invention as illustrated in the
accompanying drawings.

This invention is preferably implemented by a mi
crocomputer or other data processing system. Such a
data processing system may be conventional, however,
the present invention is implemented in an Amigami
crocomputer manufactured by Commodore Electronics
Ltd. The architecture for and procedures to implement
the present invention in the Amiga microcomputer,
however, are also not conventional, as they provide for

10

an unique approach to the creation and execution of 15
interactive multimedia presentations and coursework as
well as to the programming of applications software.
The preferred implementation, which is disclosed here
inafter in functional schematic form, is written primar
ily in the C programming language.

Referring to FIG. 1, the computer system or platform
100 is comprised of a central processing unit (or CPU)
102, a disk drive 105, a mouse 110, a keyboard 115, and
a display 120. The platform 100 may also optionally
include other external devices 125, such as a videodisc
system or an electronic instrument system.
The CPU 100 is comprised of an input/output unit

130, a random access memory unit (or RAM) 135, a
display memory unit 140, a video interface circuit (or
VIC) 145, and a microprocessor 150. These units are all
well known and operate under control of the system
software to process various inputs and provide the out
puts necessary to generate desired textual and graphic
display information on the display screen 122 of the
display 120 or other output unit such as the optional
external device 125.

Display memory 140 is a specialized section of RAM
which is used to store bit patterns (pixel data) which are
read out by the video interface circuit 145 in an appro
priate synchronization with the display beam of the
display 120 in order to provide the desired display
graphics and text.
The disk drive 105 is also conventional and is pro

vided to permit the ready interchange of control and
application software and to provide a source of mass
storage for the computer system.
The mouse 110 of the computer system 100 includes

a roller ball 111 and control buttons 112 and 113. The
buttons actuate momentary contact switches to gener
ate selection signals and other commands. These
switches and signals are well known and, as is also well
known, the user moves the mouse 110 along a planar
surface, such as a table top, to generate cursor position
input commands which are supplied to the CPU 102.
The roller ball 111 cooperates with a mechanism which
converts the movement of the mouse 110 into X-Y
signals which are used by the CPU 102 to control posi
tioning of the cursor symbol on the display screen 122
of the display 120. The conversion of the motion of the
roller ball into x-y commands is also conventional. .
The keyboard 115 may replace the activities of the

mouse 110 by presetting a number of keys on the key
board to emulate the positioning function of the mouse.
Additionally, other keys on the keyboard 115 may re
place the functions of the buttons 112 and 113 of the
mouse 110. However, in the preferred implementation
of the present invention, a mouse 110 is used for posi
tioning the cursor on the display screen 122 and for

20

25

30

35

45

50

55

65

6
performing other functions described below. As is gen
erally the case with conventional data processing sys
tems, the keyboard 115 of the computer system 100 of
the preferred implementation of the present invention
acts as a means of inputting textual or alphanumeric
information into the CPU 102. As stated above, the
display 120 is comprised of a display screen 122 for
displaying the graphic and alphanumeric information
output from the CPU 102. In the platform 100 of the
preferred implementation the display 120 may be a
touchscreen display in which commands may be en
tered into the CPU 102 via the display 120. Such touch
screen displays are also conventional.

Finally, in the preferred implementation of the pres
ent invention other external devices 125 may be con
nected to the platform 100 to participate in the execu
tion of a presentation created by the user. Examples of
these external devices are videodisc systems or elec
tronic instrument systems. These systems are also con
ventional and when connected to the platform 100 may
be used to create and present multimedia presentations
and coursework.
A. The Major Components of the Preferred Imple

mentation
The preferred implementation of the present inven

tion is comprised of several software components 200
(FIG. 2) which would reside in the disk drive 105 (FIG.
1). When the user employs the preferred implementa
tion of the present invention, all or part of the software
components 200 of the preferred implementation may
be input to the CPU 102 to service the needs of the user.
FIG. 2 is a block diagram which illustrates the soft

ware components 200 of the preferred implementation
of the present invention. The preferred implementation
is comprised of a flow editor 210, an applications mover
220, a database editor 230, an evaluator 240, an object
editor 250, a videodisc controller 260, a help system
270, and an expression editor 280.
When the preferred implementation is invoked or

begins execution in the platform 100, the flow editor 210
is the initializing component which provides for an
editing environment which is supported of one or more
flow windows generated on the display screen 122 of
the display 120. The flow window is the canvas on
which the user creates presentations. In this environ
ment, the user can create and edit one or more presenta
tions simultaneously by selecting icons, placing the
icons in a particular location of a flow window, and
defining the selected icons. The icons represent opera
tions or activities to be performed during the execution
of an presentation.
From the flow editor 210, the user can invoke the

applications mover 220, the database editor 230, the
evaluator 240, the object editor 250, the videodisc con
troller 260, and the expression editor 280, each of which
will be described below. Additionally, the user can
invoke the help system 270 from the flow editor 210.

In the preferred implementation menus, which are
collections of system options, may be displayed on the
current display screen 122 when and while the user
presses the right mouse button 112. The user may then
move the cursor, using the mouse 110, through the
options of the displayed menus. As the cursor passes
over a menu option, the option is highlighted on the
display screen. The user may make a selection of one of
the menu options by releasing the right mouse button
112 while the preferred implementation highlights the
selected option. The preferred implementation supports

5,317,732
7

menus in the flow editor 210 and the object editor 250 to
allow the user to move throughout the editors and other
support systems of the preferred implementation, as
well as to add objects to the current display screen and
Select other editor-mode selections, e.g., alter color of
current display screen of the flow editor.
FIG. 3 illustrates an example of a flow window 300.

The flow window 300 is the interface used to create and
edit presentations in the preferred implementation of
the present invention. The flow window 300 is com
prised primarily of the Graphic Interface Display (or
GRID) 310 upon which a user can place selected icons
(discussed below). One or more icons on the GRID 310
can form a presentation.
The flow window 300 also consists of a number of

gadgets. A gadget is an area in the flow window 300
which allows the user to change what is being displayed
by communicating a command to the CPU 102 (FIG.
1). The flow window 300 includes a close window gad
get 315, a drag bar gadget 320, window-to-front gadget
325, a window-to-back gadget 330, a vertical position
ing gadget 335, a horizontal positioning gadget 340,
scrolling gadgets 345a and 345b, and 350a and 350b, and
a flow window resizing gadget 355.
When the user manipulates the mouse 110 so as to

position the cursor on the close window gadget 315 and
clicks the left mouse button 113, the flow editor 210 of
the preferred implementation receives a command to
close the flow window 300. A click of the left mouse
button 113 is a quick press and release of that button
113.
The drag bar gadget 310 serves two purposes. First,

the drag bar gadget 320 serves as an area of the flow
window 300 in which the name or title of the presenta
tion may be displayed. When the user has not yet titled
the presentation presently displayed on the GRID 310,
the area of the drag bar gadget 320 in which the title
would be displayed contains the title: Untitled, as illus
trated in FIG. 3. A presentation name would appear in
place of the untitled area of the drag bar gadget 320 if
the user names the current presentation in the GRID
310 or loads from the disk drive 105 a previously saved
presentation (discussed below). Second, the drag bar
gadget 320 may be used to reposition the flow window
300 horizontally or vertically within the display screen
122 of the display 120 (FIG. 1). Again, to reposition the
flow window 300, the user positions the cursor on the
drag bar gadget 320 using the mouse 110 and depresses
the left mouse button 113. Using the mouse 110, the user
can then drag or move the flow window 300 within the
display screen 122 until the left mouse button 115 is
released.
The window-to-front gadget 325 and the window-to

back gadget 330 serve opposite purposes. The window
to-back gadget 325 permits the user to move a currently
displayed flow window 300 to the back of all currently
displayed flow windows. The window-to-front gadget
330 permits the user to move a currently displayed flow
window 300 to the front of all currently displayed flow
windows. Again, these gadgets are activated by posi
tioning the cursor on the selected gadget in the display
screen 122 using the mouse 110 and clicking the left
mouse button 113 thereby instructing the flow editor
200 to reposition the currently displayed flow window
300 in accordance with the selected gadget.
The vertical positioning gadget 335 and horizontal

positioning gadget 340 permit the user to instruct the
flow editor 210 to view a viewable portion or region of

5

10

5

25

30

35

40

45

SO

55

65

8
the presentation presently displayed on the GRID 310.
The viewable portion of the presentation is determined
by the selected size of the flow window 300. The scroll
ing gadgets 345a and 345b, and 350a and 350b permit
the user to scroll vertically or horizontally within a
presentation and the flow window resizing gadget 355
permits the user to resize the flow window 300. These
gadgets and all other gadgets and buttons on the display
screen 122 during execution of the preferred implemen
tation are initiated in the same manner as the gadgets
discussed above.

Returning to FIG. 2, the preferred implementation of
the present invention also includes an applications
mover 220 which is used by the preferred implementa
tion to move presentations from one location, e.g. the
disk drive 105 (FIG. 1), to another location, for example
a second disk drive (not shown in FIG. 1). The details
of the applications mover 220 will be discussed below
with reference to FIG. 22.
The preferred implementation includes a database

editor 230 which permits the user to create and manipu
late databases for use with presentations. The database
editor 230 allows the user to create a database in a stan
dard database format; add, update and delete data re
cords; as well as delete full databases. These operations
of the database editor are conventional, however, the
method by which the preferred implementation inter
faces with the database editor 230 is not conventional
and will be described below with reference to FIGS.
17-20.
The preferred implementation also includes an evalu

ator 240. The evaluator 240 of the preferred implemen
tation of the present invention controls the execution of
presentations created with the editors 210, 250, and 280,
and the videodisc controller 260. The details of the
evaluator 240 of the preferred implementation will be
described below with reference to FIGS. 23A-23C.
The object editor 250 of the preferred implementa

tion is used to create display objects for use in a presen
tation. Display objects are independent visual objects
which the user can place on the display screen 122
(FIG. 1). The preferred display objects are: (1) rectan
gles, (2) polygons, (3) lines, (4) circles, (5) ellipses, (6)
text, (7) brushes, and (8) data entry fields. With the
object editor 250, the user can create these objects and
turn these objects into user input areas that add interac
tivity to presentations. These input areas are referred to
as hit boxes. The functions of the object editor 250 will
be discussed below with reference to FIGS. 16A-16M.
The preferred implementation also contains a video

disc controller 260. This controller 260 is used to define
video sequences or display selected frames of a video
disc. The videodisc controller 260 permits the user to
view video, save frame numbers of a videodisc, and
perform other browsing functions of a videodisc. The
frame numbers are saved so that they may be used with
the video icon (discussed below) to include video in a
presentation.
The preferred implementation also includes an ex

pression editor 280. The expression editor 280 is used to
define variables and expressions used in a presentation.
Variables are useful for storing values in either numeri
cal or in alphabetical (string) form. Variables can then
be used in expressions which may be assignment expres
sions or conditional expressions.
An assignment expression is an expression in which

the presentation requests that the preferred implementa
tion assign a value to a variable, for example SCO

5,317,732
RE = 100. In this example of an assignment expression,
the variable SCORE is assigned the value 100. In this
manner, a presentation can refer to the variable SCORE
for the number 100. The conditional expression is gener
ally used to control flow of a presentation. For example,
a conditional expression may be SCORE (= 100. In
this expression, SCORE is greater than or equal to 100
and the preferred implementation understands this con
ditional expression as meaning "if score is greater than
or equal to 100." Further details of the expression editor
will be described below with reference to FIGS. 13 and
14.

Finally, the preferred implementation includes a help
system 270. The help system 270 provides the user with
helpful information which the user requires in order to
properly perform selected functions within the pre
ferred implementation. The functions used by the help
system 270 of the preferred implementation are conven
tional and will therefore not be described.

B. Icons (Menus and Submenus) and Relationships
At the center of the preferred implementation is the

icon menu which stretches across the bottom of the
display screen 122 (FIG. 1) when the preferred imple
mentation is first invoked by the user. The user inputs to
the CPU 102 an appropriate command to invoke or
begin the processing of the preferred implementation.
When the preferred implementation is invoked by the
user, the processing of the flow editor 210 begins.
To select an icon from the icon menu, the user posi

tions the cursor, using the mouse 110 (FIG. 1), on the
selected icon and clicks the left mouse button 113. The
preferred implementation then either displays an icon
submenu (FIGS. 5A-5F) or permits the user to drag the
selected icon into the flow window 300 for placement in
the GRID 310.
FIG. 4 illustrates the main icon menu 400 of the pre

ferred implementation of the present invention. When
entering the flow editor 210 (FIG. 2), the main icon
menu 400 appears on the bottom of the display screen
122. In addition to a trashcan icon 410, the main icon
menu 400 offers access to six submenus of icon com
mands.
The trashcan icon 410 displayed in the main icon

menu 400 is used during an editing session in the flow
editor 210 (FIG. 2) of the preferred implementation to
throw away or discard unwanted icons.
The control icon 420 offers the submenu of icons

illustrated in FIG. 5A, the interrupt icon 430 offers the
submenu of icons illustrated in FIG. 5B, the data icon
440 offers the submenu of icons illustrated in FIG. 5C,
the wait icon 450 offers the submenu of icons illustrated
in FIG. 5D, the AV icon 460 offers the user a submenu
of icons illustrated in FIG. SE, and the module icon 470
offers the user a submenu of icons illustrated in FIG. 5F.
FIG. 6 is a state diagram which illustrates the method

used by the preferred implementation to scroll from the
main icon menu 400 to the icon submenus illustrated in
FIGS. 5A-5F. First, when the user begins an editing
session in the flow editor 210 of the preferred imple
mentation, the main icon menu 400 is displayed in the
bottom of the display screen 122 (state 610). When the
user positions the cursor using the mouse 110 on an icon
in the main icon menu 400 and clicks the left mouse
button 113 on the selected icon, the user selects one of
the icon submenus (state 620) and the selected icon
submenu along with the main menu icon (not shown in
FIGS. 5A-5F) and trashcan icon 410 are displayed on
the bottom of the display screen 122 (state 630).

10

15

20

25

30

35

45

50

55

65

10
When the user positions the cursor using the mouse

110 on a icon from the selected icon submenu and clicks
the left mouse button 113 on the icon, the selected icon
becomes a draggable object. Holding the left mouse
button 113 down, the user can then drag a copy of the
icon from the icon submenu into the GRID 310 of the
flow window 300. The icon remains a draggable object
until the user releases the left mouse button 113 (used to
drag the icon) when the icon is in the selected space on
the GRID 310 (state 640). This process is described
below in detail with reference to the processes of the
flow editor 210.
Once the left mouse button 113 is released, flow edi

tor operation is returned to the submenu state 630. To
return from the submenu state 630 to the main icon
menu state 610, the user merely positions the cursor
using the mouse 110 on the main menu icon (not shown)
which is displayed on the far right in every icon sub
menu and clicks the left mouse button 113. This informs
the flow editor 210 to return to the main menu state 610.

Each of the icons in the icon submenus (FIGS.
5A-5F) represents an action to be performed at the time
of the presentation's evaluation (discussed below). Most
of the icons perform a general type of action (e.g., play
back of animation), but must be individually defined by
the user. This definition may include, for example, the
selection of the animation file to be played, the number
of iterations, the position on the screen, as well as other
pieces of information.
The flow window 300 is displayed with the GRID

310 marking the positions icons may be placed. An
icon's position, relative to the other icons in the GRID
310, determines how the icons interact. The default
traversal of the icon structure is from the top of a pre
sentation in the GRID 310 to the bottom. Icons immedi
ately above/below each other are called sibling icons.
Certain icons may be used to group a collection of other
icons. These are displayed on the main icon menu 400
(FIG. 4) or submenus (FIGS. 5A-5F) with a hollow
triangle pointing to the lower right of the icon. When
these types of icons are placed in the GRID 310, other
icons may be placed below and to the right of them. The
triangle is then displayed as a solid, with the marked
icon being called the parent and the lower icons called
children.

This parenting process allows a presentation to be
maintained in a modular manner. When a parent icon is
dragged about the presentation and placed in a new
position, all of its children are also moved to the new
location. When the parent is dragged outside of the
GRID 310 and dropped on top of the trashcan icon 410,
all of its children are also deleted from the displayed
presentation.

In the preferred implementation, there are four basic
icon relations: parent icons, child icons, sibling icons,
and partner icons. These relations can have a direct
effect on the order of execution of a presentation which
will be discussed below.

In the preferred implementation, there are nine icons
which can function as parent icons: the module icon
551, subroutine icon 552, screen icon 541, loop icon 504,
form icon 526, select icon 521, keyboard interrupt icon
511, mouse interrupt icon 512, and grouped wait icon
531, each of which will be described below with refer
ence to FIGS. 5A-5F. As stated, these parent icons are
identified by the presence of a hollow triangle in the
lower right of the icon. This triangle indicates that the
user can place child icons underneath the parent icon.

5,317,732 11
When a parent icon is selected and placed in the GRID
310 and the user selects one or more child icons and
places them to the right of the parent icon, the triangle
is filled in. On the GRID 310, child icons would be
placed beginning one column to the right and one row
down from a parent icon.
FIG. 7A illustrates an example of the parent icon

child icon relationship. The module icon 705 of FIG.
7A is a parent icon. This is identified by the triangle in
the lower right corner of the module icon 705. In this
case, the triangle of the module icon 705 is filled in or
appears solid because this module icon 705 has child
icons: the screen icon 710, and the brush icon 730. The
graphic icon 720 is a grandchild to the module icon 705
and is therefore a descendant of the module icon 705.
The operations or acts which would be performed in
response to each of these icons will be described below
with reference to FIGS.5A-5F. The screen icon 710 of
FIG. 7A is a parent icon with the graphics icon 720 as
its child. The parent-child relationship of icons in the
preferred implementation is important because the rela
tionship of icons determines the method and order by
which the evaluator 240 will execute the operations or
acts identified by the icons.
FIG.7B also illustrates another example of the parent

icon-child icon relationship, however, in FIG. 7B, the
loop icon 735 is a parent icon which signifies that this
parent icon-child icon relationship is one of a parent
interative relationship. This means that the loop icon
735 is used to inform the evaluator 240 to repeat certain
operations identified by the child icons of the loop icon
735. The actions of the child icons would be repeated
until a condition associated with the loop icon 735 is
evaluated as true. In this example, the brush icon 740
and the wait mouse icon 745 would be child icons of the
parent loop icon 735 and these child icons may be per
formed more than once, depending upon the conditions
of the loop icon 735.
The preferred implementation also has sibling icons.

Sibling icons are icons that are directly above and
below each other. The sibling icon may have a partner
icon or one or more child icons. FIG. 7C illustrates an
example of three sibling icons: an animation icon 750, a
speech icon 755, and a wait mouse icon 760, each of
which will be described below with reference to FIGS.
5A-5F. As sibling icons, when the evaluator 240 of the
preferred implementation executes the operations of the
these icons, their operations are performed in a top
down fashion or sequentially.
The forth icon relation used by the preferred imple

mentation is the partner relationship. FIG. 7D illus
trates an example of the partner icon relationship. The
if-then-else icon 765 requires a partner icon which, in
this example, is the brush icon identified by the label
brush 1770. If the expression or condition associated
with the if-then-else icon 765 is evaluated during execu
tion as true, then the operations of the partner icon, the
brush 1 icon 770, will be executed. Otherwise if the
condition of the if-then-else icon 765 is evaluated as
false, then the operation of the sibling icon, the brush
icon labeled brush 2 775 is executed. In the preferred
implementation, if the operation of the partner icon of
an if-then-else icon 765 is executed, then the evaluator
240 will continue execution beginning with the next
sibling icon immediately following the icon which fol
lows the if-then-else icon. In this example, if the actions
of brush 1770 are executed, then brush 2 775 is skipped
and evaluation continues with the icon following brush

10

15

20

25

30

35

45

50

55

60

65

12
2775 in the presentation which is the wait mouse icon
780.

Returning to FIGS. 4 and 5A-5F, the main icon
menu 400 and icon submenus FIGS. 5A-5F will be
described. When the user selects an icon from the Sub
menus FIGS. 5A-5F and places the selected icon in the
GRID 310 for a presentation, an icon requester must, in
most cases, be completed to define the selected icon.
Several icons however do not require definition using
requesters or the expression editor 280.
Each icon in the submenus FIGS. 5A-5F has a differ

ent icon requester. In general, an icon requester" is a
window (or framed area on the display screen 122)
containing information specific to a given icon which
must be completed by the user to properly define or
describe the attributes for an icon. As will be described
in detail below with reference to the operations of the
flow editor 210, after the user selects an icon and places
it in the GRID 310, the user clicks the left mouse button
113 twice (a double click) to reveal (or to have the flow
editor 210 generate on the display screen 122) the ap
propriate icon requester. The user then completes the
icon requester to properly define the icon for later eval
uation by the evaluator 240 of the preferred implemen
tation. In cases where no icon requester is used to define
an icon the expression editor 280 may be used to define
the icon. In other cases, no icon definition is necessary,
e.g. call icon or goto icon.
The submenu accessible through the control icon 420

of the main icon menu 400 is used to affect the flow of
a presentation through the use of branches and condi
tional statements. When the useris in the flow editor 210
of the preferred implementation and selects the control
icon 420, the main icon menu 400 displayed on the
bottom of the display screen 122 is replaced by the
control icon submenu 500 (FIG. 5A). In addition to the
submenu 500, the trashcan icon 410 is displayed in the
far left of the bottom of the display screen 122 and the
main menu icon (not shown) which, when selected by
the user, returns the main icon menu 400 to the display
screen 122, is displayed in the far right of the bottom of
the display screen 122. Both the trashcan icon 410 and
the main menu icon (not shown) are displayed when the
preferred implementation is in the submenu state 630
(FIG. 6) with any of the submenus (FIGS. 5A-5F)
displayed on the display screen 122.
The control icon submenu 500 consists of 7 icons.

The call icon 501 executes a subroutine which must be
defined by the user using the subroutine icon 552 of
FIG. 5F. When the user is in the flow editor 210 and
selects the call icon 501 and places a copy of the call
icon 501 in the GRID 310 (FIG. 3), a referencing place
holder icon (not shown) will appear on the GRID 310
adjacent to the selected call icon which is used to hold
the partner icon for the call icon. The partner icon for
the call icon 501 is the subroutine icon 552 of FIG. 5F.
A subroutine is a collection of icons with the subrou

tine icon 552 of the module icon submenu 550 of FIG.
5F as its parent. During evaluation, when a presentation
reaches a call icon 501, the referenced subroutine identi
fied in the partner icon to the call icon is performed.
During the performance of the subroutine, when either
a return icon 554 (FIG. 5F) is encountered or if the
subroutine is completed, the presentation will continue
starting with the icon following the call.
To select a partner to the call icon 501 placed in the

GRID 310, the user double clicks the left mouse button
113 on the referencing placeholder icon adjacent to the

5,317,732 13
referencing icon (e.g., call icon 501). The user is then
asked whether he or she wishes to specify the icon to be
referenced (e.g., the partner). If yes, then the next icon
upon which the user places the cursor on the display
screen 122, using the mouse 110, and double clicks the
left mouse button 113 initiates the referencing process.
The user if then asked if the double clicked icon is the
desired referencing partner icon. If yes, then the refer
enced icon's image replaces the original referencing
placeholder icon, and the referencing process is com
plete. If the user does not wish to reference the selected
icon, then the selection process may be continued with
another reference icon or aborted.
The conditional-goto icon 502 is used to branch to

another part of a presentation on a specified condition.
This icon conditionally transfers the flow of logic from
one part of the presentation to another. The condition
al-goto icon 502 cannot contain children, but requires a
partner. The partner is a reference to an icon elsewhere
in the presentation. In a manner similar to the call icon
501, when the user selects the conditional-goto icon 502
and places the icon on the GRID 310 for a presentation,
a placeholder icon (not shown) appears in the GRID
310 adjacent to the conditional-goto icon which holds
the place for the partner icon which will identify where
to branch to in the presentation. The user selects a part
ner for this icon in the manner described above with
reference to the call icon 501. Additionally, the user
must input an expression, using the expression editor
280 (discussed below), to indicate to the presentation
when it is to branch to the identified partner. To invoke
the expression editor 280, after placing the conditional
goto icon 502 on a GRID 310, the user places the cursor
over the icon and double clicks the left mouse button
113.
Another control icon in the control icon submenu is

the goto icon 500. This icon is used for unconditional
branching or transfer control within a presentation. The
goto icon 503 cannot contain children, but, like the call
icon and conditional goto icon 502, requires a partner.
Again, when the goto icon 503 is selected by the user
from the control icon submenu 500 and placed in a
GRID 310, a placeholder appears in the GRID adjacent
to the goto icon and the user must specify where the
presentation is to branch to when executing the goto
statement. This icon represents an unconditional branch
in a presentation and therefore does not require defini
tion by using a requester or the expression editor 280.
However, the user must select a partner for this icon in
the manner described above with reference to the call
icon 501.
Another control icon in the control icon submenu 500

is the loop icon 504. The loop icon 504 is used to specify
a loop structure within a presentation. The loop icon
504 does not have a partner, but it does require children
as described above with reference to FIG. 7B. Children
are identified on the GRID 310 by placing icons on the
GRID 310 in the column to the right of the parent icon
beginning with the row directly below the row upon
which the parent icon is placed. The user selects the
loop icon 504 to set up a structure to cycle through a
group of children icons.
Three types of loops may be constructed with the

flow editor 210 and are defined using the loop icon
requester and the expression editor (discussed below).
They are: the endless loop, the counted loop, and the
conditional loop. Each of these loop structures has
different exit conditions. The endless loop can be termi

10

15

20

25

30 .

35

45

50

55

65

14
nated with the loop exit icon 505, which can also be
used to terminate the other types of loop structures. The
counted loop terminates at the end of the count speci
fied using the loop icon requester and the conditional
loop is ended when a selected condition, written in the
expression editor, is set to false during the performance
of a presentation. During a presentation, when the pre
sentation reaches a loop icon, the actions of the children
icons are performed. When the actions of the children
icons are completed, the presentation will resume exe
cution from the beginning of the loop. If an exit condi
tion is reached, the loop stops and the presentation
moves on to the next sibling of the loop icon.
The exit loop icon 505 ends a loop structure and

during a presentation, when an exit loop icon 505 is
reached, the presentation continues with the next sib
ling icon following the loop. The loop exit icon cannot
contain children and does not have a partner icon. The
loop exit icon 505 does not require definition by an icon
requester because when this icon is encountered during
execution of a presentation, the current (inner-most)
loop executing is exited.
The if-then icon 506 of the conditional icon submenu

500 is used to define a condition which, if true, will
cause the action of its partner icon to be performed
during a presentation. If the condition is false the part
ner icon is skipped and the action of the sibling icon
following the if-then icon will be performed. In either
case, the icon following the if-then icon is always per
formed. Thus, the if-then icon 506 cannot have children
but does require a partner. Again, to set the condition
for the if-then icon, the user defines the if-then icon 506
using the expression editor (discussed below) which can
be initiated from the flow editor 210 by double clicking
the left mouse button 113 while the cursor is positioned
on the if-then icon 506 placed in the GRID 310. The
partner icon for the if-then icon 506 is selected in the
same manner discussed above with reference to the call
icon 501.

Finally, the control icon submenu 504 has an if-then
else icon 507. This icon 507 defines a condition for
executing one of two separate icons: one if the case
specified in the condition, set using the expression edi
tor, is true and one if the condition is false. Similar to the
if-then icon 506, the if-then-else icon 507 cannot have
children, but requires a partner. During the presenta
tion, if the condition specified for the if-then-else icon in
a presentation is true, the presentation performs the
actions of its partner icon. It then skips the icon follow
ing the if-then-else icon which represents the else part.
If the condition is false, then the presentation performs
the action of the else part, which is the sibling icon
immediately following the if-then-else icon. The if-then
else icon 507 in a presentation is defined using the ex
pression editor (discussed below).

Returning to FIG. 4, the icon main menu 400 also has
an interrupt icon 430. When the interrupt icon 430 is
selected by the user in the flow editor 210, the interrupt
icon submenu 510 of FIG. 5B is displayed on the bottom
of the display screen in place of the main icon menu 400.
The interrupt icon submenu 510 in the preferred imple
mentation consists of three interrupt icons: (1) the key
board interrupt icon 511, (2) the mouse interrupt icon
512, and (3) the remove interrupt icon 513. These icons
are used to define an action in a presentation that is to be
performed during a presentation when the executing
presentation is interrupted.

5,317,732
15

The keyboard interrupt icon 511 allows an interrup
tion to the executing presentation when certain keys are
pressed. If one of the specified keys is pressed, the pre
sentation will pause, and the actions of the children of
the keyboard interrupt icon will be performed. Thus, 5
the keyboard interrupt icon 511 can have children as
well as siblings. The keyboard interrupt icon 511 is
defined using the keyboard interrupt icon requester and
the object editor 250 (discussed below). To initiate the
keyboard interrupt requester, the user double clicks the 10
left mouse button 113 while the cursor is on the icon in
the GRID 310. The keyboard interrupt requester has a
gadget that, when selected, enables the user to enter the
object editor 250.
The mouse interrupt icon 512 interrupts a presenta- 15

tion when a mouse button 112 or 113 is clicked. The
mouse interrupt icon 512 defines an interrupt to the
presentation flow if the mouse is clicked in a certain
area of the display screen 122. If interrupted, the presen
tation will pause and the actions of children of the inter- 20
rupt will be performed. The mouse interrupt icon 512 is
defined using the mouse interrupt icon requester and the
object editor 250 (discussed below). To initiate the
mouse interrupt requester, the user double clicks the left
mouse button 113 while the cursor is on the icon in the 25
GRID 310. The mouse interrupt requester has a gadget
that, when selected, enables the user to enter the object
editor 250.

Finally, the remove interrupt icon 513 only disables
interrupts in the same column on the GRID 310 of the 30
presentation that have the same parent. This icon 513
does not contain children.
Another submenu of the main icon menu 400 is the

data icon submenu 520 illustrated in FIG. 5C. The data
icon submenu 520 defines a set of icons used to define 35
variables, define data entry forms, store and retrieve
data from a database, and define printed or file output in
a presentation. Of the data icons in the data icon sub
menu 520 there are three icons which exclusively relate
to data operations on an existing database; the select 40
icon 521, the read/write icon 522, and the delete icon
523 (FIG.5C).
The select icon 521 of the submenu 520 can be used to

open a database file and select records using one or
more fields. The select icon can have other icons as 45
children. One or more of the fields may be key fields. As
described more fully below with reference to the data
base editor 230 of the preferred implementation, a key is
made up of one or more fields of the database record
structure and is used when searching the data file for a 50
specific record or a set of records. For example, a data
base of employee information may contain employee
information alphabetically by the last name or by em
ployee ID number. Therefore when creating the data
base the last name field and employee ID field are speci- 55
fied as key fields. In this way, the user can access data
records either by specifying the employee ID or the
employee last name. The select icon 521 in a presenta
tion is defined using the select icon requester.
Another data icon in the data icon submenu 520 is the 60

read/write icon 522. This icon 522 reads and writes to
database records which were previously selected using
the select icon 521. The read/write icon 522 cannot
contain children. When using this icon, the user assigns
a variable to a field in the database record, and selects 65
the appropriate action (read, insert, or update). The
read/write icon 522 in a presentation is defined using
the read/write icon requester.

16
Another data icon in the data icon submenu 520 is the

delete icon 523. This icon 523 removes the currently
selected record. This icon 523 has no children and is
defined using the delete icon requester.
The next icon in the data icon submenu is the vari

ables icon 524. This icon 524 is used to define new
global variables, or assign new values to existing vari
ables by evaluating expressions specified by the user.
The difference between global variables and local vari
able is conventional. Global variables can be accessed
from anywhere in a presentation and local variables can
only be accesses in a particular region of a presentation,
e.g., within a subroutine. The variables icon 524 can
have no children and is defined using the variables icon
requester and the expression editor 280.
Next in the data icon submenu 520 is the output icon

525. The output icon 525 is used to send a single line of
output to a disk file or a printer. The output icon 525
cannot contain children and is defined using the output
icon requester.
The data form icon 526 follows to the right of the

output icon 525 on the data icon submenu 520. This icon
526 defines forms on the screen for data entry by users
during the execution of a presentation. The data form
icon 526 can have other icons as children. The object
editor 250 (discussed below) is used to define all of the
data fields for the form.

Finally, the data form exit icon 527 of the data icon
submenu 520 is used to exit or abort a data form opera
tion. The form exit icon 527 cannot contain children and
this icon 527 can only be used as a child to the data form
icon 526.

Returning to FIG. 4, to the right of the data icon 440
is the wait icon 450. When the user selects the wait icon
450, the wait icon submenu 530 illustrated in FIG. 5D
replaces the main icon menu 400 on the bottom of the
display screen 122. The wait icon submenu 530 consists
of five icons.
The first icon in the wait icon submenu 530 is the

grouped wait icon 531. This icon 531 is used to combine
wait icons. The function of the grouped wait icon 531 is
as a parent to other specific wait icons from the wait
icon submenu 530. This icon 531 waits for any one or all
of its children to be completed.
The next icon on the wait icon submenu 530 is the

wait condition icon 532. This icon 532 is used to wait for
a specific condition to be true. Once the condition oc
curs, the presentation continues. This icon 532 cannot
contain children and the condition is defined using the
wait condition icon requester and the expression editor
250 (described below).
The next icon in the wait icon submenu 530 is the

wait keyboard icon 533 which is used to pause the pre
sentation and wait for a desired keystroke. This icon 533
cannot contain children. When the user selects this icon
533, there are two options. The first is to wait for a
specific key or keys to be pressed. Second, the user may
allow for the presentation to wait for any key to be
pressed. A keyboard icon requester and the object edi
tor 250 are used define the condition of this wait icon
533. The display objects and text for the wait keyboard
icon 533 are created in the object editor 250 (described
below).
The next wait icon in the wait icon submenu 530 is

the wait mouse icon 534. This icon 534 is used to pause
a presentation and wait for a desired click of a mouse
button 112 or 113 (FIG. 1). The wait mouse icon 534 has
no children. Similar to the wait keyboard icon 533, the

5,317,732
17

wait mouse icon 534 has two options. First, is to wait for
a mouse click in a specific hit box or area of the display
screen 122 and the second is to wait for any mouse click.
A wait mouse icon requester and the object editor 250
are used define the condition of this wait icon 534. The
display objects and text for the wait mouse icon 534 are
created in the object editor 250 (described below).

Finally, the last icon in the wait icon submenu 530 is
the delay icon 535. The delay icon 535 is used to pause
the presentation for a specified number of seconds. It
does not require a response from the user. This icon 535
has no children. With this icon, during evaluation (or
execution of a presentation), the evaluator 240 does not
move to the next icon until a preset time has elapsed.
The delay icon 535 is defined by the delay icon re
quester.

Referring again to FIG. 4, the main icon menu 400
also contains an AV icon 460. When this icon is se
lected, the AV icon submenu 540 illustrated in FIG.5E
replaces the main icon menu 400 on the bottom of the
display screen 122 (FIG. 1). Audiovisual icons are used
to perform operations such as playing video, animation,
sound, speech, or musical files, and displaying pictures
and graphics.
The left-most icon in the AV icon submenu 540 is the

screen icon 541. The screen icon 541 is used to define
the background screen for presenting any visual infor
mation such as pictures. This icon 541 uses an icon
requester to specify display parameters, e.g., screen
resolution, number of colors, palette, and the size of the
picture. The screen icon 541 may also be used to load a
bit-mapped image from the disk drive 105 (FIG. 1) to
display on the display screen 122. Bit-mapped images
are conventional and therefore will not be explained.
The screen icon 541 can have other screen icons as
children as well as any other AV icons from the AV
icon submenu 540.
To the right of the screen icon 541 on the AV icon

submenu 540 is the digitized sound icon 542. This icon
542 is used to play a recorded voice or sound that has
been previously digitized. This icon 542 cannot have
children and is defined using the digitized sound icon
requester.
Next in the AV icon submenu 540 is the synthesized

speech icon 543. The synthesized speech icon 543 can
be used to play back text that the user inputs or text
from an ASCII text file. This icon 543 cannot contain
children and is defined using the synthesized speech
icon requester.
Next to the synthesized speech icon 543 on the AV

icon submenu 540 is the music icon 544. The music icon
544 is used to play back musical scores created in music
software programs. This icon 544 also cannot contain
children and is defined using the music icon requester.
The fourth icon from the left in the AV icon submenu

540 is the graphics icon 545. This icon is used to modify
and control the display screen 122 (FIG. 1) and enables
the user to place display objects (created using the ob
ject editor) on the display screen 122. This icon also lets
the user specify color cycling effects. Like most of the
AV icons, this icon 545 also cannot have children and is
defined using a graphics icon requester.
To the right of the graphics icon 545 in the AV icon

submenu 540 is the brush icon 546. This icon 546 is used
to overlay a specific picture file on top of the current
display screen 122. The brush icon 546 also cannot have
children. The brush icon 546 differs from the screen
icon 561 in that it does not delete the existing back

10

15

20

25

30

35

40

45

SO

55

65

18
ground pictures or graphics on the display screen 122. It
also does not modify screen attributes such as resolu
tion. However, the user may specify palette changes in
the brush icon requester used to define this icon 546.
The AV icon submenu 540 also contains a video icon

547. The video icon 547 is used to play a segment of
video or a single video frame from a videodisc player
which may be part of the platform 100 of FIG. 1. The
video icon 547 cannot have children and is defined
using the video icon requester and may make use of the
videodisc controller 260 (discussed below).
To the right of the video icon 547 on the AV icon

submenu 540 is the animation icon 548. The animation
icon 548 is used to play back an animation file which has
been created in a conventional paint or animation soft
ware application. The animation icon cannot have chil
dren and is defined by the animation icon requester.
At the right hand side of the AV icon submenu 540 is

the text file icon 549. The text file icon 549 is used to
display text from an ASCII file onto the display screen.
The text file icon cannot have children and is defined
using the text file icon requester.

Returning to FIG.4, the last icon on the right of the
icon main menu 400 is the module icon 470. When the
user selects the module icon 470, the main icon menu
400 is replaced on the display screen 122 (FIG. 1) with
the module icon submenu 550 illustrated in FIG. 5F.
The module icon submenu 550 consists of six icons.

The first icon in the module icon submenu 550 is the
module icon 551. The module icon 551 is used to help
organize presentations. The module icon 551 can be
used as a parent for other icons or groups of icons in
cluding other module icons. Thus the module icon 551
can contain other module icons like itself, as well as
other icons as its children. The module icon 541 can also
be a child to other parent icons. The module icon is
defined using the module icon requester and the expres
sion editor 280. Variables defined in a module of a pre
sentation are local to that module. For example, if the
user defines variables for the module icon 705 in FIG.
7A, these variables exist during the evaluation of the
module icon's 705 descendants including icons 710, 720
and 730. These local variables would not exist during
the evaluation of the module icon's 705 siblings (not
shown).
Another icon in the module icon submenu 550 is the

subroutine icon 552. The subroutine icon 552 provides
another method of structuring a set of actions that the
user wishes to use repeatedly in a presentation. The
subroutine icon 552 can contain other icons as children,
but cannot contain itself as a child. It must always ap
pear in the left-most column of the GRID and there
fore, may be a sibling of the very first module icon. The
subroutine icon 552 is defined using the subroutine re
quester and the expression editor 280. Variables associ
ated with a subroutine icon are subject to the same
scoping (local) as described above with reference to the
module icon 541.
To the right of the subroutine icon 552 on the module

icon submenu 550 is the quit icon 553. The quit icon 553
can be used to exit and return to the flow editor 210
when creating a presentation or terminate the execution
of a presentation.
The next icon in the module icon submenu 550 is the

return icon 554. The return icon 554 explicitly stops the
execution of a subroutine and returns control back to
the next icon following a call icon 501. This icon 554
cannot have children and it can only appear as a part of

5,317,732
19

the flow of a subroutine. The preferred flow editor 210
will not permit the user to place the return icon 554
outside of a subroutine.
The execute icon 555 is adjacent to the return icon

534 in the module icon submenu 550. The execute icon
555 references an external program and allows the ex
ternal program to execute as a part of the presentation
flow. The execute icon 555 cannot have children and is
defined in a presentation with the execute icon re
quester.
The timer icon 556 of the module icon submenu 550

is used to time specific parts of a presentation. It does
not stop the presentation, but merely acts as a stop
watch measuring time in elapsed seconds with up to
two decimal places. This icon 556 also cannot contain
children and is defined using the timer icon requester.

Finally, the last icon in the module icon submenu 550
is the resource control icon 557. The resource control
icon 557 is used to preload and unload resources such as
picture, sound, animation and music into memory 135 of
the platform 100 (FIG. 1). This icon 557 is used to re
duce long waits in the middle of a presentation for the
system to load the required information. This icon 557
also cannot contain children and is defined using the
resource icon requester.

Returning to FIG. 6 the operational flow of the icon
menus may be further explained in the context of a
typical editing session as follows. When the flow editor
210 of the preferred implementation is started, the user
is presented with an editing screen on the display screen
122 showing a screen header across the top, a panel of
icons across the bottom, and an untitled presentation or
flow window on the left.
The editing process is started by selecting a specific

icon for placement in the empty flow window 300. The
icons initially displayed on the panel at the bottom of
the display screen 122 consists of the main icon menu
400 (see FIG. 4) which represents the different types of
actions the preferred implementation supports. Posi
tioning the cursor on an icon and clicking the mouse (or
selecting the icon) instructs the preferred implementa
tion to display on the bottom panel of the display screen
122 the appropriate icon submenu (FIGS. 5A-5F) de
pending upon which icon from the main icon menu 400
(FIG. 4) was selected. For example, the main icon menu
400 in the preferred implementation has an AV icon 460
which represents the submenu containing all of the
audiovisual actions supported by the preferred imple
mentation. These include the icons discussed above
with reference to FIG. SE.
Once the desired submenu has been displayed, any

one of the icons in the selected submenu may then be
selected for placement in the GRID 310 of the flow
window 300 by (1) positioning the cursor on the icon,
(2) pressing the left mouse button 113, (3) holding the
left mouse button down and dragging the icon with this
button depressed, (4) positioning the selected icon being
held or dragged by the mouse in the proper position in
the GRID 310 of the flow window 300, and (5) releas
ing the left mouse button 113. The selected icon will
now be added to the presentation displayed in the
GRID 310.
The definition of icons may be performed in a re

quester specific to each type of icon. The requester for
an icon placed in the GRID 310 is "opened" by double
clicking the left mouse button 113 (FIG. 1). The icon
requester is then displayed on the display screen 122.
Opening the requester for the first time presents an

10

15

20

25

30

35

45

50

55

65

20
empty requester with only limited preset attributes (or
descriptive information). The requester includes a set of
one or more buttons which are regions that the user
may activate to modify different attributes. The user
can then modify any of the attributes by clicking on the
appropriate buttons. Some buttons present further re
questers for entering numeric values, selecting a file
from a directory on a disk, etc.
Although each icon has specific attributes and there

fore a specific icon requester, an example of an icon
requester will now be explained with reference to the
icon requester for the animation icon 548 discussed
above with reference to FIG. 5E.
FIG. 8 illustrates the preferred icon requester 800 for

the animation icon 548. The animation icon 548 is used
to play back an animation file created using a conven
tional paint or animation software application. The
animation icon requester 800 consists of several input
fields in which the user must input information to set the
attributes of the animation icon 548 or to define the
animation icon 548. The animation icon requester 800
also consists of several gadgets which are used to set
icon attributes and reposition the requester 800 on the
display screen 122. To initiate each of these gadgets, the
user positions the cursor using the mouse 110 on the
gadget in the display screen 122 and then clicks the left
mouse button 113. This permits the user to alter the
attributes associated with an icon using the gadgets of
the icon requester.
The first gadget in the animation icon requester 800 is

the directory gadget 810 which permits the user to
select, using the file requester, the name of an animation
file to be played. Alternatively, the user may click the
left mouse button 113 on the filename field 815 in the
animation icon requester 800 and type in the name of an
animation file in the space 815. The animation icon
requester 800 also has an override screen gadget 820
which defaults to "on' and uses the screen resolution of
the animation file, completely replacing the previous
screen. If the user clicks the left mouse button on this
gadget 820 to turn it off, then the evaluator 240, during
execution of the presentation, will assume the current
resolution, i.e., the resolution of the last screen that was
displayed.
The palette gadget 825 is used to specify between the

current palette and an override palette. A palette is the
set of colors specified for display on the display screen
122. The palette gadget 825 is defaulted to the current
palette which, if retained by the user, causes the speci
fied animation to be displayed using the current palette
of display colors. If the override is selected by the user,
then the animation's palette will be used, changing the
existing colors displayed on the display screen 122.
The loop gadget 830 is selected if the user wishes to

play the animation a specified number of times. The
number of loop repetitions is specified in the reps field
835a of the animation icon requester 800 by clicking the
left mouse button 113 on the reps gadget 835 which
enables the user to enter a number into the reps field
835a. In FIG. 8, the loop gadget 830 has not been acti
vated and therefore the reps gadget 835 is "ghosted" or
appears shaded. If the user selects the loop gadget 830,
then the reps gadget 835 will be “unghosted" and the
user will be permitted to alter the number, e.g., 0, in the
reps field 835a.
The left gadget 845 and the top gadget 850 of the

animation icon requester 800 are used to specify the
coordinates of the top left corner of the picture in the

5,317,732
21

selected animation file. The user merely clicks the left
mouse button 113 on either gadget to enter the specific
value for these fields 845a and 850a, respectively. The
transitions gadget 860 of the animation icon requester
800 is used to specify the screen pattern to be used when
switching to the first picture of an animation. .
The animation icon requester 800 also has a preview

gadget 865, help gadget 870, reset gadget 875, and a
cancel gadget 880. The preview gadget 865 is used to
See an operation, without running the presentation,
while you are creating the presentation. The help gad
get 870 initiates the help system 270 of the preferred
implementation which provides the user with help in
formation concerning, in this case, the animation icon
requester 800. The reset gadget 875 clears all of the
attributes previously set by the user in the animation
icon requester 800, and the cancel gadget 880 cancels
the animation icon requester 800 and returns the user to
the point at which she selected the animation icon and
double-clicked on the icon to initiate the animation icon
requester 800 in the flow editor 210.
The Icon Name field 885 allows the user to give a

meaningful name to the icon which will be shown on
the GRID 310. It is also useful when searching for a
particular icon. The use and contents of this field is
completely up to the user. To enter an Icon Name into
the icon name field 885, the user merely clicks the left
mouse button 13 on the Icon Name field 885.
The Memo gadget 890 allows the user to add a de

scription of the actions of the icon which will be pres
ented only inside the requester. The use and contents of
this field is completely up to the user. To enter a memo
into the memo field 890, the user merely clicks the left
mouse button 113 on the memo field 890.
The Pause gadget 892 allows the user to specify if

icons following the animation icon may be started be
fore the animation is completed. If the Pause gadget 892
is selected (remains checked), the animation will be
completely presented before its sibling icon is started. If
the Pause gadget is not selected (cleared), the animation
will be started, and while being presented, the actions of
its sibling icon will be performed. Other gadgets in the
animation icon requester, e.g., the drag bar gadget 320,

10

5

20

25

30

35

40

have already been described with reference to the flow
window 300 of FIG. 3.

After all attributes have been properly set, the re
quester can be closed, and the information saved, by
clicking on the "OK" button 895 which is in all request
ers. Subsequent openings of the requester will display
the previously set attributes for review or editing.

C. The Presentation Structure
The preferred implementation may be used to gener

ate or create a presentation, to manipulate or edit al
ready created presentations and to execute presenta
tions using the above-described icons. However, each
icon is merely an identification of an act to be per
formed during the evaluation of the presentation and
the icon requester is used to define the identified act. As
described above, in the preferred implementation icons
have familial relationships which are used to determine
the order in which the operations of a set of icons in a
presentation are to be evaluated. This familial relation
ship corresponds to the underlying structure of a pre
sentation which is evaluated by the evaluator 240. FIG.
9A illustrates an example of the structure of a presenta
tion which will determine not only how the evaluator
240 would evaluate and execute this presentation struc
ture but would also determine how the flow editor 210

45

50

55

65

22
traverses the presentation structure in response to user
commands.
A presentation structure created with the preferred

implementation is made up of a RootBvent (not shown)
and any number events and commands. The Rootevent
is a part of every presentation structure and will be
described below with reference to the evaluator 240
processes. An event is an icon which may contain chil
dren and a command is an icon that may not contain
children.
The small block 900 on FIG. 9A shows a sample

presentation as viewed in the flow editor. It contains
two module icons 901 and 903 (both containing chil
dren) and four other icons. The module icons 901 and
903, and all other icons which are displayed with the
triangles, may contain zero, one, or more children, as
described earlier. These icons are represented internally
by event structures. All icons which cannot contain
children are defined internally by command structures.
Command and event structures are similar, with

event structures being a superset of the command struc
tures. While the complete details of these structures
need not be described here, the primary members are
the parent list, the child list, the reference list, and the
specific data pointer. List structures are defined by the
conventional operating system, and are used because of
the operating system-supplied routines for fast and easy
maintenance of the list contents. Both events and com
mands contain a parent list and specific data members,
but only the event structure contains child list and refer
ence list members. This is illustrated in FIG. 9A. For
example, the event structure 901 contains a parent list
950, a child list 951, a reference list 952, and a specific
data member 953, and the command structure 902 con
tains a parent list 955 and a specific data member 956.
The data structures that connect the event structures

and command structures of a presentation together are
called "LinkNodes.' LinkNodes are small sections of
memory that comprise the elements of any of these lists.
For example, LinkNode 911 connects event node 901
with command node 902. The child list 951 of event
structure 901 points to the LinkNode 911 and the Link
Node 911 points to the command structure 902 with a
pointer field 960.
An expanded version of a LinkNode also exists which

is called a CondNode. CondNodes are used when two
icons are displayed on the same horizontal line in the
flow editor, and may only be present on an event struc
ture's child list. For example, in FIG. 9A, the Cond
Node 919 refers to the conditional-goto specifier dis
played in the small box. 900. Like other LinkNodes, the
CondNode 919 contains a pointer field that points to the
command structure 905 representing the conditional
goto icon. Since the CondNode 919 is one which refers
to another command or event in the presentation struc
ture 910 to be executed when a condition is evaluated as
true, the Cond Node 919 contains a reference pointer
field 970 which points to the referenced command
structure 902.

All of these structures can be seen in the example of
a presentation structure 910 which represents the struc
ture of the example presentation in box. 900.

For each child of a given event, there exists one Link
Node or CondNode on its child list. In FG. 9B event
E1901 contains two children, a command C1902, and
another event E2903. Present on E1's child list are two
LinkNodes 911 and 915 each pointing to one of the
children. Likewise, the child list of event E2903 con

5,317,732
23

tains two elements. The first is a LinkNode 921 pointing
to the command C2 904, and the second is a Cond Node
919 pointing to the command C3905. Command C3905
represents the Conditional Goto icon as shown in block
900 of FIG. 9A. Since the action of the Conditional
Goto requires a partner to be specified, the CondNode
contains a member 970 (FIG. 9A) which points to an
event or command defined elsewhere in the presenta
tion. In this example, the referenced icon is the com
mand C1902.

Referring again to FIG. 9A, each icon which is a
child of another has at least one member on its parent
list 950, 955 and 957. This list may contain only Link
Nodes and is maintained to allow easy tracking of all
points in the presentation that refers to each icon. The
first element on the list must be a pointer to the event
which contains a LinkNode to the child on the event's
child list. These are marked as "ActionLink” Link
Nodes 912,914,918 and 920. This example shows sev
eral one element parent lists (event E2903, command
C2904, and command C3905).
Any subsequent LinkNodes on an icon's parent list

represent non-parental references to the icon and are
marked as ReferenceLink LinkNodes. This setting re
flects that the event pointed to contains a LinkNode on
its reference list referring to this icon. Only the parent
list of command C1901 contains more than one Link
Node, because this is the only icon in the example that
is referenced from some other point in the presentation
(by the Conditional Goto C3905). The ReferenceLink
LinkNode 913 further marks that the event pointed to
has at least one CondNode on its child list that points to
the icon 902 containing the ReferenceLink LinkNode
913 on its parent list 955. Only events contain reference
list members, which may contain only LinkNodes, each
one pointing to the non-child icons referred to by all of
the CondNodes on the event's ActionList. For example,
as illustrated in FIG. 9A, the event E2903 has a refer
ence list which contains LinkNode 916 which points to
the command C1902.

Referring again to FIG. 9B, most icons may only be
defined by opening their requester in the flow editor
210, specifying the desired information and choosing
the OK button. This information is stored either in the
Event/Command structure, or in a block of data
pointed to by the specific data pointer. This pointer may
in fact point to a list of nodes, each storing part of the
information specified by the icon. The majority of the
information is stored outside of the Event/Command
structure to allow these structures to be as small as
possible.
The command C1902 is an animation icon which will

show the animation named "Example.Animfile' in a
loop 3 times in paused mode. Likewise the speak icon
contains a data block defining all of the attributes of the
phrase to be spoken. This is shown in FIG. 9B where
the specific data pointer 956 of command C1902 points
to the specific data block 940 which stores information
specific to the actions of the animation icon (shown in
block 900 of FIG. 9A) as set by the user (described
below). Similarly, the specific data pointer 958 of com
mand C2 904 points to the specific data block 941 the
action of a speech icon (shown in block 900 of FIG.A).

Both events shown in the diagram contain at least one
expression 942,943, and 944. These are stored in distinct
data blocks, marked as expressions, which contain the
string version of the expressions. When the module
event is encountered by the evaluator 240 during pre

10

15

20

25

30

35

45

50

55

65

24
sentation, each of the expressions is evaluated, defining
or redefining variables to be used elsewhere in the pre
sentation.

Expression data blocks are also used by all Cond
Nodes which point to commands that define conditional
expressions for certain icons (e.g., conditional goto,
If-then, or If-then-else). This is shown in FIG.9B where
the CondNode 919 points to the expression data block
945.

D. The Authoring System
The preferred implementation of the present inven

tion provides users with an authoring system in which
users can create presentations having a structure of the
type described in FIGS. 9A-9B using icons from the
submenus (FIGS. 5A-5F) and evaluate the created
presentations.
As illustrated in the flow diagram of FIG. 24, the user

selects an icon from one of the icon submenus and the
preferred implementation receives an indication of the
user's selection (step 2410). Based upon the user's selec
tion of a particular one of the icons in the submenus, the
preferred implementation then generates a data struc
ture in the memory of the platform 100 (FIG. 1) associ
ated with the selected icon (step 2420). As discussed
above, each icon represents an action or operation to be
performed by the CPU 102 of the platform 100 during
the evaluation process. Additionally, one or more data
structures corresponding to selected icons form a pre
sentation.

After the data structure for a selected icon has been
generated, the preferred implementation then displays
on the GRID 310 in the display screen 122 an image
representing the selected icon at the position in the
GRID 310 selected by the user (step 2430). After the
user selects an icon and places it in the GRID 310 and
defines its attributes, the user may evaluate the data
structure to perform the action represented by the data
structure for each selected icon (step 2440).

E. The Editing Session (Flow Editor)
FIG. 10 illustrates a block diagram of the flow editor

210 of FIG. 2 and the relationship of the three compo
nents of the flow editor 210: the icon menu 1010, the
edit window handler 1020, and the icon requester han
dier 1030, to the software components of the preferred
implementation identified in FIG. 2 and the computer
system components first identified in FIG. 1. In other
words, FIG. 10 illustrates that the icon menu 1010 of
the flow editor 210 is connected to the edit window
handler 1020 and to no other components of the pre
ferred implementation. The icon menu 1010 however is
connected to the disk drive 105, the mouse 110, and the
keyboard 115 of the platform 100 (FIG. 1). Others
skilled in the art may develop other methods of com
partmentalizing the functions and operations of the flow
editor 210, however, the preferred flow editor has been
separated into components 1010, 1020, and 1030 in the
preferred implementation to explain easily, the pre
ferred operations of the flow editor. This is not meant to
limit the present invention to this particular structure
for this flow editor 210.
The icon menu 1010 of the flow editor 210 has been

described above with reference to FIGS. 4, 5A-5F, and
6.
The edit window handler 1020, on the other hand is

connected to every component of the preferred imple
mentation except the expression editor 280. This means
that when the flow editor 210 is executing in the pre
ferred implementation, the edit window handler 1020

5,317,732 25
cannot access the expression editor 280. However, the
edit window handler 1020 can access the applications
nover 210, the database editor 230, the evaluator 240,
the object editor 250, the videodisc controller 260, and
the help system 270. The edit window handler 1020 is
also connected to every component as the icon menu
1010 by virtue of them both being a part of the flow
editor 210.
The last component of the flow editor 210 is the icon

requester handler 1030. The icon requester handler 1030
is used to define or fully describe icons (by creating icon
requesters) selected by the user during an editing ses
sion. For example, if, during an editing session, a user
selects the control icon 420 from the main icon menu
400 (FIG. 4) and enters the control icon submenu 500
(FIG. 5A) and selects the if-then icon 506 to be inserted
into the presentation on the GRID 310, the user must
also define this icon using, in this case, the appropriate
icon requester for the if-then icon. This identifies the
condition in which the user wishes the presentation to
perform the "then' or partner icon of the if-then icon.

Like the other components of the flow editor 210, the
icon requester handler 1030 is connected to the disk
drive 105, the mouse 110, and the keyboard 115 of the
computer system 100 (FIG. 1). The icon requester han
dler 1030 is also connected to the evaluator 240, the
object editor 250, the videodisc controller 260, the help
system 270, and the expression editor 280 of the pre
ferred implementation. That is, when the user has se
lected an icon from the icon menu and places the icon in
a presentation in the GRID 310 and enters the icon
requester window of the preferred implementation, the
user can, from the icon requester, access the appropriate
one(s) of these five components of the preferred imple
mentation. Each of these components, except the help
system 270, will be described more fully below.

Referring to FIGS. 11A-11G the operations of the
edit window handler 1020 during an editing session will
be described.
When the user begins the processing of the preferred

implementation, the processes 1100 of the edit window
handler 1020 are automatically performed. First, as
illustrated in FIG. 10A, the edit window handler 1020
opens the edit screen (step 1101). The edit screen is an
area of the display screen 122 which includes zero, one
or more flow windows, the icon menus (FIGS. 4 and
5A-5F) along the bottom of the display screen 122 and
the main system menu along the top of the display
screen 122 (not shown).
The edit window handler 1020 then displays in the

edit screen the main icon menu 400 (FIG. 4) (step 1103)
and opens a flow window (step 1105). The flow win
dow is initially untitled. The flow editor then awaits a
user action (step 1107) at which point the user may
retrieve a presentation previously created from the disk
drive 105 (FIG. 1), begin creating a new presentation in
the flow window 300 or initiate some other operation of
the preferred implementation, e.g., execute database
editor. A user action may be initiated by positioning the
cursor using the mouse 110 on a selected area of the
display screen 122 and then presses the left mouse but
ton 113 to select an operation of the edit window han
dler 1020. User action may also be implemented using
other means, e.g., right mouse button 112 or keys on the
keyboard 115, as described below.
When a user action is input the edit window handler

1020, responds by performing the requested function. If
the user is in the edit window handler 1020 and clicks

O

15

25

30

35

45

50

55

65

26
the left mouse button 113 while the cursor is inside of
the GRID 310 (step 1109), then the operations of the
edit window handler 1020 continue with step 1140 in
FIG. 11B. If the click is outside of the GRID 310, and
not on top of any of the icons in the icon menus, the
click is ignored. The edit window handler 1020 is only
concerned with user actions inside flow windows con
taining a GRID 310.
FIG. 11B shows the flow of operations of the edit

window handler 1020 used to insert or edit icons in the
GRID 310. First, the edit window handler 1020 deter
mines whether it is presently in the collect mode (step
1140). The collect mode is when the user is selecting a
group of existing icons for rearrangement in the GRID
310. If the edit window handler 1020 is not in the collect
mode (step 1140), then the edit window handler 1020
determines whether the user has clicked on a box in the
GRID 310 which already contains an icon (step 1141).
If the user has not clicked on a box in the GRID 310
containing an icon (step 1141), then the edit window
handler 1020 determines whether any icon in the GRID
310 has been selected (step 1142). If no, then the opera
tion of the edit window handler continues with step
1107 of FIG. 11A. Otherwise, the edit window handler
1120 unselects the current icon (step 1143) and contin
ues with step 1107 of FIG. 11A.

If the user has clicked on a box in the GRID 310
which contains an icon (step 1141), then the edit win
dow handler 1020 determines if this icon is currently
selected (step 1144). Selected icons are icons that appear
highlighted in the GRID 310. Unselected icons are not
highlighted in the GRID 310. If so, and the second click
was within a predetermined time period (step 1145),
then the icon requester handler 1030 is initiated for the
selected icon (step 1146). Once the operations of the
icon requester handler (discussed below) are complete,
the flow editor returns to step 1107 of the edit window
handler 1020 of FIG. 11A. If the user did not double
click on the icon within the predetermined time period
(step 1145), then the edit window handler 1020 contin
ues operation with step 1107 of FIG. 11A.

If the user has not clicked on the currently selected
icon (step 1144), then the edit window handler 1020
unselects the previously selected icon and then selects
the currently selected icon from the GRID 310 (step
1147). After the new icon is selected, the edit window
handler 1020 determines whether the user wishes to
initiated a dragging action of the selected icon (step
1148). A user initiates a dragging action by holding the
left mouse button 113 down while the cursor is on top of
the selected icon. If no dragging action has been re
quested (step 1148) then the edit window handler con
tinues with step 1107 of FIG. 11A. Otherwise, if the
user wishes to drag the selected icon (step 1148), then
the edit window handler 1120 creates a draggable ob
ject of the selected icon and permits the user to move
the icon until the mouse button is released (step 1149).
After the icon is dragged to a new box in the GRID 310,
the edit window handler continues operation in step
1107 of FIG. 11A.

Otherwise, if the edit window handler 1020 is in the
collect mode (step 1140) then the processes of the edit
window handler continue with step 1150 of FIG. 11C.
The operations of the collect mode of the edit window
handler 1020 begin with first determining the logical
minimum and maximum number of icons collectable in
both the horizontal and vertical directions and generat
ing in the GRID 310 the collection rectangle with

5,317,732 27
which the user initiates the collection process when the
user clicks the left mouse button 113 (step 1150). Then
edit window handler 1020 draws and redraws the col
lection rectangle in response to mouse movements until
the left mouse button 113 is released (step 1151). Then
edit window handler 1020 presents the user with a re
quester to verify the collection region specified in the
collection rectangle (step 1152). The edit window han
dler 1120 determines whether the user has confirmed
the collection of the icons in the region (step 1153). If
yes, the edit window handler creates a module icon (as
a parent icon), inserts the module icon as the first icon in
the selected group and moves all of the selected icons
within the collection region to children icons of the new
module icon (step 1154). When the operations of the
collect mode are complete or if the user does not con
firm the collection (step 1152), then flow of control of
the edit window handler 1020 returns to step 1107 of
FIG. 10A to await a user action.
Otherwise, the edit window handler 1020 determines

if the user has positioned the cursor on the display
screen 122 in a predetermined location and has pressed
the arrow keys 345 and 350 of the flow window 300 (or
the arrow keys on a conventional keyboard) or the
scroll bars 335 and 340 of the flow window (step 1111).
If yes, the edit window handler 1020 will move the
viewable portion of the presentation on the GRID 310
in the flow window 300 in the requested direction (step
1113) and then redisplay the flow window 300 in accor
dance with the user's request (step 1117). The edit win
dow handler 1020 then returns to step 1107 to await the
next user action.
On the other hand, if the user positions the cursor in

the flow window 300 on the display screen 122 in the
resize window gadget 355 (FIG. 3) and resizes the win
dow (step 1115), then the edit window handler 1020
redisplays the resized flow window 300 (step 1117). In
the preferred implementation, the resizing process is
performed by the operating system of the platform 100.
The edit window handler 1020 then returns to step 1107
to await the next user action.

If the user selects the telescoping action from the
main system menu along the top of the display screen
122 (step 1119), then the edit window handler 1020
continues with step 1160 of FIG. 11D. In the telescop
ing option, the user can condense child icons into their
parent icons to conserve space on the GRID 310. To
perform the telescoping function, the edit window han
dler first determines whether the current icon selected
by the user is a parent icon (step 1160). If no, then the
edit window handler ends the telescoping operation and
returns to step 1107 of FIG. 11A.

If the current icon is a parent icon (step 1160), then
the edit window handler determines whether the cur
rent icon's children are visible (are presently being dis
played in the GRID 310) (step 1161). If the current icon
has children being displayed in the GRID 310, then the
edit window handler 1020 finds the first child icon for
the current icon (step 1162) and marks the child icon as
non-displayed. This informs the edit window handler
1020 that the marked icon should not be displayed in the
GRID 310.

After the child icon is marked, the edit window han
dier 1020 then determines whether the next icon in the
GRID 310 is a sibling icon to the marked child icon
involved in the telescoping operation (step 1164). If yes,
then this sibling icon is marked as a non-displayed icon
(step 1163) and the edit window handler 1020 again

10

15

20

25

30

35

40

45

50

55

65

28
continues with step 1164. If the next icon the GRID 310
is not a sibling icon to the child icon (step 1164), then
the edit window handler 1020 redisplays the GRID 310
with the child icons of the parent icon selected in step
1160 no longer displayed in the GRID 310 (step 1168).
The edit window handler 1020 then continues with step
1107 of FIG. 11A.

Otherwise, if the current icon's child icons are not
visible in the currently displayed GRID 310 (step 1161),
then the edit window handler 1020 locates the first child
icon of the current icon (step 1165) and marks the child
icon as displayed (step 1166) in order to display the
child icon on the GRID 310. The edit window handler
then determines whether the next icon in the GRID 310
is a sibling of the marked child icon (step 1167). If yes,
then this child icon is also marked for display (step
1166). If the next icon in the GRID 310 is not a sibling
of the marked child icon (step 1167), then the edit win
dow handler1020 redisplays the GRID 310 (step 1168),
completes the telescoping function, and returns to step
1107 of FIG. 1A.

If the user in the edit window handler 1020 selects the
function of the edit window handler 1020 to drag an
icon from the GRID 310 to the trashcan icon 410 (FIG.
4) to delete the dragged icon (step 1121), then the opera
tion of the edit window handler 1020 illustrated in FIG.
11E to delete the icon is performed.

First, the edit window handler 1020 begins the icon
deletion process by removing the selected icon from the
presentation structure presently displayed in the GRID
310 (step 1170). Next the edit window handler 1020
determines whether the deleted icon is a parent icon
(step 1171). If the deleted icon is a parent icon (step
1171), then the edit window handler 1020 finds the first
child icon of the deleted parent icon (step 1172) and
then removes that child icon from the presentation
structure (step 1173). If this child icon is also a parent
icon (step 1174), then the edit window handler returns
to step 1172 to find the first child icon of this parent
icon. This is a recursive process which is a conventional
programming function.

If the child icon is not a parent icon (step 1174), then
the edit window handler 1020 determines whether the
next icon in the presentation structure is a sibling icon to
the deleted child icon (step 1175). If yes, then the sibling
icon is removed from the presentation (step 1173) and
the edit window handler 1020 determines whether this
removed icon is a parent icon (step 1174). If the next
icon in the presentation is not a sibling of the child icon
that was removed with its parent icon (step 1175), then
the edit window handler 1020 determines whether there
are any remaining icons visible in the GRID 310 of the
flow window 300 (step 1176).

If there are icons remaining in the GRID 310 (step
1176), then the edit window handler redisplays the
GRID 310 without the deleted icon (step 1180). Other
wise, the edit window handler determines if there are
any icons remaining in the presentation currently being
displayed (step 1177). If there are more icons in the
displayed presentation, then the edit window handler
1020 changes the GRID 310 position in the presentation
to view at least one of the remaining icons (step 1178).
If there are no other icons remaining in the presentation,
the edit window handler 1020 creates a module icon and
adds the module icon to the presentation to duplicate
the untitled presentation status (step 1179). After either
step 1178 or step 1179, the edit window handler 1020

5,317,732
29

redisplays the GRID 310 in the flow window 300 and
then returns to step 1107 of FIG. 11A.

In FIG. 11A, if the user selects an icon for placement
in the GRID 310 (step 1123), then the operation of the
edit window handler continues with step 1181 of FIG.
11F. In this case, the edit window handler 1020 first
determines whether the selected icon is coming from
another GRID 310 or being copied from another part of
the same GRID 310 (step 1181). If yes, then the edit
window handler 1020 makes a copy of the icon and all
of its children, if any, for insertion into this GRID 310
(step 1182).

If the icon is not coming from another GRID 310 or
another point in the same GRID 310 (step 1181), then
the icon is coming from an icon submenu and the edit
window handler 1020 determines whether the user's
placement of the icon in the GRID 310 is valid (step
1183). After making a copy of the icon and its children
(step 1182), the edit window handler 1020 also deter
mines whether placement of the icon (and its children)
is valid (step 1183). In determining whether the place
ment of an icon is valid, the edit window handler 1020
considers whether the new or copied icon can be a
child, mate, or sibling.

If the placement of the new icon is not valid, then the
edit window handler 1020 deletes the new icon and any
children if the new icon was one which was copied
from this or another GRID 310 or selected from an icon
submenu (step 1190). Subsequently, the edit window
handler returns to step 1107 of FIG. 11A.

Otherwise, if the placement of the new icon is valid
(step 1183), then the edit window handler 1020 must
consider whether the new icon is being moved from
another part of the same GRID 310 (step 1184). Since
an icon that is being moved (not copied) from one posi
tion to another position in the same GRID 310 and the
new position cannot be located in the children, grand
children, etc. of the original position, the edit window
handler 1020 determines whether the new position for
the copied icon is a new descendent of the original (step
1185). Once the new position is known, the child list of
the original icon is checked to determine whether new
position is a descendent of the original (step 1185). If
yes, the edit window handler 1020 terminates the opera
tions of FIG. 11F and continues with step 1107 of FIG.
11A. However, if the new position is not inside this
region of the presentation, the move is valid (step 1185)
and the edit window handler 1020 removes the icon
from the original position in the GRID 310 (step 1186).
Then, or if the icon being moved is not from another
part of the same GRID 310 (step 1185), the edit window
handler 1020 adds the new icon at the requested posi
tion in the GRID 310 (step 1187).

If the icon being added to the presentation is one
coming from an icon submenu and one which will refer
ence another icon (e.g., a call, goto, or conditional
goto), a referencing placeholder icon is needed (step
1188). If no, then the operations of the edit window
handler 1020 continues with step 1107 of FIG. 11A.
Otherwise, the edit window handler 1020 creates a
temporary command which is marked as this referenc
ing placeholder icon and is added to the presentation
until the referencing process is completed (step 1189).
Thereafter, the operations of the edit window handler
1020 continue with step 1107 of FIG. 11A.
As described above, the edit window includes a menu

from which the user may select, using the mouse 110,
certain options. In step 1125 of FIG. 11A, the edit win

10

30
dow handler 1020 determines whether the user has
selected the open option form the edit window menu. If
yes, then the edit window handler 1020, opens another
flow window and displays the new flow window
smaller and in front of all other previously displayed
windows. The user may have as many windows open
on the display screen 122 at the same time as the plat
form 100 is capable of accommodating. After displaying
the new flow window, the operation of the edit window
handler 1020 then returns to step 1107 to await the next
user action.

15

20

25

30

35

If the user action clicks on the close window gadget
315 within a flow window 300 (step 1129), then the edit
window handler 1020 continues operation in FIG. 11G.
As illustrated in FIG. 11G the edit window handler
1020 of this invention first determines whether the flow
window 300 selected by the user to be closed has been
edited since the last time it was saved (step 1191). If no,
then the edit window handler 1020 merely closes the
current flow window (step 1196) and returns to FIG.
11A to await the next user action (step 1107).

Otherwise, if the flow window 300 has been edited
(step 1191), then the edit window handler 1020 gener
ates on the display screen 122 a message to the user to
select either that the flow window be closed or saved,
or to cancel the request to close the flow window (step
1192). If the user selects cancel from the generated
message (step 1193), then the operation of the close
window gadget 315 is terminated and the edit window
handler 1020 operation continues in FIG. 11A to await
the next user action (step 1107). If the user selects the
save option (step 1194), then the edit window handler
1020, initiates the conventional operation of saving the
presentation to the disk drive 105 (FIG. 1) and the flow
window 300 is closed (step 1196). The operation of the
edit window handler 1020 then continues in FIG. 11A
by awaiting the next user action (step 1107). Otherwise,

40

50

55

65

if the user has not selected the cancel or save option, the
user selected the close option and the edit window
handler 1020 closes the flow window 300 (step 1196)
and then continues operation in FIG. 11A by awaiting
the next user action (step 1107).

If the user selects the quit option from the menu of
the edit window (step 1131), then the edit window han
dler 1020 determines whether there are any flow win
dows open (step 1133). If yes, then the operations of
FIG. 11G (described above) are executed. After return
ing from the operations of FIG. 11G, the edit window
handler 1020 determines whether the open flow win
dow has been closed (step 1135). If yes, then the edit
window handler 1020 determines whether there are any
open windows remaining on the display screen 122 (step
1133). This process continues until all open flow win
dows have been closed. If the open flow window did
not get closed, then the operation of the edit window
handler 1020 returns to step 1107 to await the next user
action.
On the other hand, if the user selected the quit option

from the menu (step 1131) and all flow windows are
closed (step 1133), then the operations of the edit win
dow handler 1020 are complete and the edit screen is
closed.

Icons coming from the icon menu are handled by the
edit window handler 1020 and then the icon requester
handler 1030. FIG. 12 is a flow diagram 1200 depicting
the flow of operations of the icon requester handler
1030.

5,317,732
31

After the icon requester handler begins operation, it
determines whether the selected icon is a referencing
placeholder icon (step 1205). A referencing placeholder
icon is an icon which must be replaced by the image of
a partner icon. If yes, then the icon requester handler
asks whether the user wishes to pick an icon to be refer
enced (step 1210) which, if not selected by the user,
causes the operation of the icon requester handler 1030
to end (step 1285). If the user does wish to select the
icon to be referenced (step 1210), then the operation of
the icon requester handler 1030 continues by setting the
internal referencing select status switch (step 1240). The
icon requester handler 1030 keeps an internal state that
represents whether a reference process is being com
pleted.
When the user begins referencing, the switch is set,

and the icon requester handler 1030 is exited until the
next double-click on an icon in the GRID 310. The next
entry into the icon requester handler 1030 checks if the
switch is set and if so, attempts to complete the refer
encing process. After the referencing is complete, the
switch is cleared and the operation of the icon requester
handler 1030 is also complete (step 1285).

If the selected icon is not a referencing placeholder
(step 1205), and if the icon requester handler 1030 is
currently in the referencing select mode (step 1220),
then the icon requester handler determines whether the
selected icon is a valid reference partner or originating
icon (step 1225). If no, the icon requester handler gener
ates on the display screen the appropriate message in
forming the user that the selection is invalid for the
appropriate reason (step 1230). A call may only refer
ence a subroutine icon, a goto may only branch to one
of the children of its ancestors, etc. Then, if the user
wishes to continue referencing (step 1235), then the
operation of the icon requester handler 1030 is complete
(step 1285). Otherwise, if the user does not wish to
continue referencing, then the icon requester handler
1030 clears the referencing select status (step 1240) and
then completes its operation (step 1285).

Otherwise, if the icon requester handler 1030 deter
mines that the selected icon is a valid reference partner
for the original referencing icon (step 1225), then the
icon requester handler 1030 asks if the user wants to
reference the current icon (step 1245). If yes, then the
icon requester handler 1030 completes the referencing
process and clears the referencing select status (step
1250) before completing (step 1285). If the user does not
want to reference the current icon (step 1245), then the
icon requester handler 1030 continues by asking if the
user wishes to continue referencing (step 1255). If yes,
then the icon requester handler 1030 completes opera
tion (step 1285). Otherwise, the icon requester handler
1030 clears the referencing-select status (step 1260) and
completes operation (step 1285).

If the selected icon is not a referencing placeholder
(step 1205) and if the icon requester handler 1030 is not
currently in the referencing select mode (step 1220),
then the icon requester handler determines whether the
selected icon is a conditional icon (step 1265). If yes,
then the icon requester handler 1030 initiates the expres
sion editor (step 1270). The operations of the expression
editor of the preferred implementation are discussed
below.

If the icon is not a referencing placeholder icon (step
1205), the icon requester handler 1030 is not in the refe
rencing-select mode (step 1220) and the selected icon is
not conditional (step 1265), then the icon requester

5

O

15

20

25

30

35

45

50

55

65

32
handler determines whether the icon has an icon re
quester (step 1275). If no, then the operation of the icon
requester handler 1030 is complete (step 1285). Other
wise, the icon requester handler 1030 calls a routine
which handles the requester operation for each icon
(step 1280).
While the process to support the requester for each of

the different icons is unique to the icon type, the process
clearly divides into three parts. First, if information has
been saved in a specific data block and attached to the
presentation structure (see FIGS. 9A and 9B), this in
formation is extracted and used to set the state of all the
buttons and other gadgets on the newly opened re
quester. If no information has previously been saved,
meaningful default values are set in the requester. Sec
ond, the requester support code monitors the user's
actions, updating gadget settings when needed and veri
fying user input. When the user signals that they are
satisfied with the current settings by clicking the "OK"
button 895 (FIG. 8), the information currently shown in
the requester is saved in a specific data block (a new one
is created if needed) and the block is attached to the
icon. If the Cancel button 880 is depressed, the informa
tion in the requester is discarded, and the incoming
specific data block (if any) is retained. The requester is
then closed, and the icon requester handler 1030 opera
tion continues.
When the called routine has completed its operation,

the icon requester handler 1030 completes its operation
(step 1285).

F. The Expression Editor
As described above with reference to FIG. 2, the

expression editor 280 of the preferred implementation is
used to specify expressions which may define variables.
FIG. 13 illustrates a preferred example of the expression
editor window 1300 as displayed on the display screen
when the user operates the expression editor.
The expression editor window 1300 includes several

fields to input information, gadgets, and buttons. The
function performed by the close window gadget 315,
the drag bar gadget 320, the window-to-front gadget
325, the window-to-back gadget 330, the help button
870, the cancel button 880 and the OK button 895 of the
expression editor window have already been described
with reference to FIGS. 3 and 8.
The expression editor 280 may be entered in one of

two modes. When a condition is needed (for the icons
having a diamond shape, or for the loop, wait condition,
etc.), only one string (the condition) may be entered. In
this mode, the up button 1305, down button 1310, and
insert button 1320 are not valid and are displayed
ghosted. When the expression editor is entered from
either the module, subroutine, or X/Y icon, any number
of expressions may be specified. In this mode, the up
button 1305 and down button 1310 buttons allow the
user to move through the expressions defined by the
icon. Normally, new expressions may simply be added
to the end of the list. If, however, the user wants a new
expression to be inserted at a particular position, the
insert button allows the expression to be inserted.
The backspace button 1325 deletes the character to

the left of the cursor in the expression field 1340 and the
delete button 1330 permits the user to delete the charac
ter under the cursor. Finally, the cancel button 880
instructs the editor to discard any modifications made,
and return only the expressions defined when the editor
was entered. The expression editor window 1300 also

5,317,732
33

has a clear button 1335 which clears the current expres
sion being displayed in the expression field 1340.

Additionally, the expression editor window consists
of five separate regions: the functions region 1360, the
variables region 1370, the logical operators region 1380,
the arithmetic operators region 1345, and the expression
field 1340. The functions region 1320 contains a list of
standard arithmetic and string functions. The user may
scroll up and down through the functions list using the
up and down arrow buttons 1385 to the right of the
functions list. The user may also scroll up and down
through the functions list using the positioning bar 1390
which allows more rapid movement through the list
than the buttons 1385. The user may select one of the
functions from the functions list using the mouse 110
and left mouse button 113.
The variables region 1370 of the expression editor

window 1300 is used to list all of the local and global
variables that are available for use. Again, the user may
scroll up and down through this list using the up and
down arrow buttons 1386 to the right of the list. The
user may also scroll up and down through the variables
list using the positioning bar 1395 which allows for
more rapid movement through the list than the buttons
1386. The user may select one of the variables from the
list using the mouse 110 and left mouse button 113.
The logical operators region 1380 of the expression

editor window 1300 is used primarily for conditional
icons to set the condition for the icon. For example, to
set a condition for an if-then icon, when the user selects
the icon and places it in the GRID 310, the user double
clicks on the icon to initiate the icon requester handler
for the if-then icon. Once the icon requester handler
1030 (FIG. 10) is initiated, it invokes the expression
editor 280 and the expression editor window 1300 for
the user to select the expression. The user then enters, in
the expression field 1340, using the functions, variables,
arithmetic operator, or logical operators in the expres
sion editor window 1300 to create the expression for the
if-the icon.
The arithmetic operators 1345 are used in the assign

ment of expressions and as a general purpose numerical
pad. Finally, as previously suggested, the expression
field is used to enter the expression for a conditional
CO

The preferred operations of the expression editor will
now be described with reference to the flow diagram
1400 illustrated in FIG. 14.
When the user enters the expression editor 280 of the

preferred implementation of the present invention, a
window is opened (step 1405). This is conventional and
is generally supported by the operations of the system
software of the computer system 100 (FIG. 1). After the
expression editor window is opened, the expression
editor determines whether an incoming string has been
previously specified by the user (step 1407). If yes, then
the incoming string is displayed in the expression editor
window (step 1409). Otherwise, or after the incoming
string is displayed in the expression editor window
1300, the expression editor awaits a user action (step
141).
After a user action is detected, the expression editor

280 responds to the input user action by first determin
ing what the user action was and what is the required
response to that action. In determining what the input
user action is, the expression editor first asks whether
the user action was to press a key on the keyboard (step
1413). If yes, the expression editor continues by modify

O

15

20

25

30

35

45

50

55

65

34
ing the display string (step 1415) followed by returning
to step 1411 to await further user action.

If the input user action was not a key press (step
1413), then the preferred expression editor determines
whether the user has clicked (positioned the cursor in
the appropriate location on the display screen and
pressed the left mouse button 113) in the function list of
the expression editor window (step 1417). If yes, the
expression editor will add a function to the display
string, add parentheses to the display string, and posi
tion the cursor inside the parentheses added to the dis
play string (step 1419). The expression editor then'con
tinues in step 1411 awaiting the next user action.

Otherwise, the expression editor determines whether
the user has clicked inside the variable list (step 1421). If
yes, the expression editor adds the variable name from
the variable list to the display string (step 1423). The
expression editor continues at step 1411.

Otherwise, if the user has clicked on one of the sym
bol or number buttons (step 1425), the expression editor
adds the symbol or number to the expression currently
being edited (step 1427). If the user has clicked on the
help button in the expression editor (step 1429), the help
display of the help system of the preferred implementa
tion is displayed for the user (step 1431). Otherwise, if
the user clicks on the cancel button or the close window
gadget (step 1433), then the expression performs the
necessary operation to close the expression editor win
dow, destroy the currently edited display string, and
exit to the flow editor returning nothing (if the icon was
never previously defined) to the presentation currently
in the GRID 310 (steps 1439 and 1441). If the expression
is entered from a previously defined icon, selecting
cancel returns the previous meaning.

Finally, if the user is in the expression editor and
clicks on the "OK" button 895 (step 1437), then the ex
pression editor window 1300 of the preferred imple
mentation is closed followed by the operations for exit
ing the expression editor 280 and returning to the pre
sentation in the GRID 310 with the edited display string
(steps 1439 and 1441).
Using the expression editor 280, the user can then add

conditions and other expressions to the presentation.
G. The Object Editor
FIG. 15 illustrates a block diagram of the preferred

object editor 250 of the preferred implementation of this
invention and the relationship of the object editor to the
disk drive 105, the mouse 110, and the keyboard 115 of
the computer system 115 (FIG. 1). The object editor
250 includes an object creation/specification/editing
component 1510, and an object requester component
1520. Both components of the object editor 250 are
connected to the preferred help system 270 of the inven
tion so that the help system 270 can be entered by the
user when in either component 1510 or 1520 of the
object editor 250. The object requester component
1520, however, is connected to the expression editor
280, while the component 1510 is connected to the
videodisc controller 260. Therefore, only the object
requester component 1520 can access the expression
editor 280 (discussed below). Those skilled in the art
may recognize other methods for compartmentalizing
the functions and operations of the object editor, how
ever, the preferred object editor 250 has been separated
into components 1510 and 1520 to explain easily the
operations of the preferred object editor. This is not
meant to limit the present invention to this particular
structure for this editor.

5,317,732 35
The object creation/specification/editing component

1510 is used to interactively design, position, and edit
display objects to be used in a presentation, while the
object requester component 1520 performs, in a manner
similar to the icon requesters discussed above, the func
tion of defining the object created by the user with the
component 1520.
The operational flow of the object editor 250 will

now be described with reference to FIGS. 16A-16M
which is a flow diagram 1600 of the preferred opera
tions of the object editor of this invention.

First, when the object editor 250 begins, it determines
whether the user entered the object editor through the
flow window icon (step 1601). If yes, then the object
editor searches up from the flow window icon to find
any screen definition icon (step 1602). The object editor
220 always attempts to display a background screen on
the display screen 122 in the same mode that will be
showing when the current icon is evaluated. Thus,
when entered from an icon in an presentation, the previ
ous siblings, parents and their siblings are checked for
screen-defining actions. When a screen-defining icon is
found, this screen format is used for the background of
the object editor 220.

If a screen icon is found (step 1603) then the object
editor 250 opens the screen defined by the found icon
(step 1604) and then determines whether the user has
specified a picture (step 1605). If yes, the object editor
asks whether the user wants the specified picture dis
played (step 1606). If the user wants the specified pic
ture displayed (step 1606), the object editor displays the
picture (step 1607) and then displays any objects associ
ated with the screen icon (step 1608). Otherwise, if the
user does not want the specified picture displayed (step
1606), then the object editor merely displays the objects
associated with the selected icon (step 1608). If the user
has not specified a picture (step 1605), then the object
editor merely displays the objects associated with the
selected icon (step 1608).

Otherwise, if no screen icon is found (step 1603), the
object editor 220 opens a standard edit screen (step
1609). After the standard edit screen is opened (step
1609), the object editor determines whether any objects
are defined by the selected icon (step 1610). If yes, the
object editor displays the objects associated with the
selected icon (step 1608). Otherwise, the object editor
250 informs the user that the editor was entered (step
1611).

Next, the object editor awaits a user action (step
1612). When a user action is input to the preferred im
plementation of the object editor, the object editor
responds accordingly as described more fully below.

If the user selects the screen definition option from
the object editor menu (step 1613), the object editor
presents the screen definition requester to the user,
allows the user to specify screen settings, and displays
the new screen (step 1619). The object editor 250 then
returns to await the next user action (step 1612).

If the user selects the screen palette option from the
object editor menu (step 1615), then the object editor
presents the user with the screen palette requester, al
lows the user to specify screen colors in the requester
and displays the display screen with the palette of colors
(step 1616). The object editor then returns to await the
next user action (step 1612).

If the user selects the videodisc option from the ob
ject editor menu (step 1617), the object editor 250 re
turns to await the next user action (step 1612).

10

15

20

25

30

35

45

50

55

65

36
If the user chooses to load previously saved object

definitions by making the proper menu selection (step
1622), then the object editor 250 presents the user with
the Load Display Objects file requester allowing selec
tion of the file to be loaded. The new objects are then
displayed, erasing any existing objects on the display
screen 122 (step 1623). The object editor then returns to
await the next user action (step 1612).

If the user chooses the clear objects option from the
object editor menu (step 1624), then the object editor
250 determines whether any objects presently exists on
the display screen 122 (step 1625). If yes, then the object
editor 250 first confirms with the user that wishes to
continue (step 1626), and then erases all existing objects
from the display screen 122 (step 1627). After erasing all
existing objects (step 1627) or receiving a negative con
firmation from the user in step 1625, or determining in
step 1626 that there are no objects on the display screen,
the object editor 250 returns to await the next user
action (step 1612).

If the user chooses the preview option from the ob
ject editor menu (step 1628), then the object editor 250
enters its preview mode, displaying all objects on the
display screen as if the present collection was being
evaluated at run-time, and responds to the user's input
until the right mouse button 112 is clicked (step 1629).
The object editor 250 then returns to await the next user
action (step 1612).

If the user chooses the redisplay option from the
object editor menu, (step 1630), then the object editor
250 redisplays the display screen and all existing objects
(step 1631). The object editor 270 then returns to await
the next user action (step 1612).

If the user chooses the save option from the object
editor menu (step 1632), then the object editor deter
mines whether the current display screen has been pre
viously saved under a file name (step 1633). If yes, then
the object editor 250 saves the current objects in the
display screen to the file having the same name as the
previously named file (step 1634). Otherwise, the object
editor 250 presents the user with the Save Display Ob
jects file requester and allows the user to select the
name for the new objects file (step 1635). After the user
has selected the new name for the object file, and saves
the currently displayed objects (step 1635), the object
editor 250 returns to await the next user action (step
1612).

If the user selects the Save As option from the object
editor menu (step 1636), then the object editor displays
on the display screen the Save Display Objects file
requester allowing the user to select the name of the
object file, and saves the current displayed objects to
the file (step 1637). The object editor 250 then returns to
await the next user action (step 1611).

If the user selects the help option from the object
editor menu (step 1638), then the object editor initiates
the help system of the preferred implementation which
generates the appropriate help display (step 1639). After
the user has completed the help, the object editor re
turns to await the next user action (step 1612).

If the user selects the add (object type) from the
object editor menu (step 1640), then the object editor
250 continues in step 1701 of FIG. 16H. .
Most objects created by the object editor 270 are

initially specified by positioning the mouse at the de
sired initial position, depressing the left mouse button
113, dragging the mouse until the object is the desired
size and shape, and releasing the left mouse button 113.

5,317,732 37
This can be envisioned for rectangles, circles, etc. The
only object which requires more than two points to be
specified is a polygon. Editing a polygon is performed
by clicking at the initial point, moving to the second
point, clicking again, repeating the move and clicking
steps until the desired polygon has been defined. The
definition is completed by clicking the right mouse
button 112 which connects the last point defined with
the first, closing the polygon. The right mouse button
112 is generally viewed to be an abort signal from the
user. The object editor uses it to abort definition of all
objects except the polygon, which uses the right mouse
button 112 to signal completion as described above.

In step 1701 of FIG. 1.6G, the object editor 250 first
determines whether the object type selected by the user
is a polygon. If the object type selected by the user is
not a polygon (step 1701), the object editor 250 awaits
the next user action (step 1703). If the user clicks on the
right mouse button 112 (step 1704), the functions of the
add object type option of the object editor menu are
complete and the flow continues in step 1612 (FIG.
16A) where the object editor 250 awaits the next user
action. Otherwise, if the user clicks the left mouse but
ton 113 down (step 1705), the object editor 270 awaits
the next user action (step 1706).

If the mouse is then moved (step 1707), then the ob
ject editor draws a boundary line on the display screen
122 which the user then uses to define the object place
ment and size (step 1708). The object editor 270 then
returns to await the next user action (step 1706). If the
mouse is not moved (step 1707), but the right mouse
button 112 is clicked down (step 1709), then the func
tions of the add object type option of the object editor
menu are complete and the flow returns to step 1612
(FIG. 16A) to await the next user action.
However, if the left mouse button 113 is released

(step 1710), then the object editor 250 allocates an ob
ject of the selected object type and size and displays the
object on the display screen (step 1711). The object
editor 270 has then completed the add object function
and returns to step 1612 (FIG. 16A) to await the next
user action. If the left mouse button 113 is not up (step
1710), the object editor 250 returns to step 1706 to await
the next user action.

If the user selected the object type as a polygon (step
1701), then the object editor continues its operations in
(step 1720) of FIG. 16H and awaits the next user action.
If the user presses the left mouse button 113 down (step
1721), then the object editor 250 draws a point at the
current mouse position (step 1722) and returns to await
the next user action (step 1720). Otherwise if the left
mouse button 113 is not down and the mouse is moved
(step 1723), then the object editor draws aboundary line
on the display screen 122 from the last point at which
the left mouse button 113 was depressed to the current
cursor position (step 1724). The object editor then re
turns to await the next user action (step 1720). How
ever, if the mouse is not moved (step 1723), and the
right mouse button 112 is depressed (step 1725), then the
object editor 250 determines whether the user has
drawn more than one point on the display screen 122
(step 1726). If yes, then the object editor allocates the
polygon object for display to the display screen 122 and
displays the object on the display screen 122 (step 1727).
Then, and if the user did not draw more than 2 points on
the display screen 122 (step 1726), the operations of the
add polygon option of the add object type option of the
object editor 250 are complete and the flow of control

10

15

20

25

30

35

45

50

55

65

38
returns to the main object editor menu at which point
the object editor 250 awaits the next user action (step
1612).

Returning to FIG.16C, if the user selects the arrange
option from the object editor menu (step 1641), then the
object editor enters the arrange menu option flow illus
trated in F.G. 16.

First, the object editor 250 awaits the next user action
(step 1730). If the user clicks the left mouse button 113
down over an object (step 1731), and it is the first time
that user has clicked the left mouse button 113 down
over an object (step 1732), then the object editor 250
positions the object under the mouse as the first object
in the display list for the current display (step 1733).
The object editor 250 then returns to await the next user
action (step 1730).
The display list is a list of data structures representing

the objects. Each data structure contains information
describing one object and its attributes (e.g., coordi
nates for positioning on the display screen, width,
height, and color).

If this is not the first object clicked upon (step 1732),
the object editor 250 positions the current object under
the mouse after the last object arranged (step 1734) and
returns to await the next user action (step 1730). If the
left mouse button 113 has not been clicked down over
an object (step 1731) and the right mouse button 112 has
been depressed down (step 1735), the operations of the
arrange menu option of the object editor 250 have been
completed and control returns to step 1612 of FIG. 16A
to await the next user action. If the right mouse button
112 has not been pressed down (step 1735), then the
object editor 250 awaits the next user action in the ar
range option.

If the user selects the copy option from the object
editor menu (step 1642) (FIG. 16C), then the functions
of the copy option are performed. The copy option
functions are illustrated in FIG. 16.J.
The copy actions are initiated by the user selecting

the operation from the menu, depressing the left mouse
button 113, dragging the new object to its position and
releasing the left mouse button 113. As with object
definition, this process may be cancelled by clicking the
right mouse button 112.

First, the object editor 250 awaits the next user action
(step 1740). If the right mouse button 112 has been
depressed (step 1741), then the object editor 250 cancels
the copy option selected by the user main object menu
to await the next user action (step. 1612). If the right
mouse button 112 has not been depressed (step 1741),
and the left mouse button 113 is depressed (step 1742),
then the object editor 250 begins dragging the image of
the selected object as requested by the user (step 1743).
The object editor 240 then returns to await the next user
action (step 1740). If the left mouse button 113 is re
leased (step 1744), then the object editor 250: 1) allo
cates a copy of the selected object, 2) adds a copy of the
selected object to the front of the display list, 3) gives
the object the screen coordinates where the image was
dragged, 4) makes the object the selected object, and 5)
displays the selected object (step 1745). The operation
of the copy menu option of the object editor 250 are
now complete and control returns to FIG. 16A where
upon the object editor 250 awaits the next user action
(step 1612). If the left mouse button 113 has not been
released (step 1744), the object editor 250 redraws the
object at its current position (step 1746) and the copy

5,317,732 39
procedure of the object editor 240 returns to await the
next user action (step 1740).

Returning to FIG.16C, if the user of the object editor
250 selects the delete option from the object editor
menu (step 1643), then the object editor 250 removes
the selected object from the display list and the display
screen 122 (step 1644). The object editor then returns to
step 1612 (FIG. 16A) to await the next user action.

If the user selects the depth-front option from the
object editor menu (step 1645), then the object editor
250 repositions the selected object at the front of the
display list (step 1646) and awaits the next user action
(step 1612).

If the user selects the depth-raise option from the
menu (step 1647) in FIG. 16D, then the object editor
250 raises the selected object one position above its
current position in the display list (step 1648). The ob
ject editor 250 then returns to await the next user action
(step 1612).

If the user selects the depth-lower option from the
object editor menu (step 1649), then the object editor
250 lowers the selected object one position below its
current position in the display list (step 1650). The ob
ject editor then returns to await the next user action
(step 1612).

If the user selects the depth-back option from the
object editor menu (step 1651), then the object editor
250 repositions the selected object at the end of the
display list (step 1652). The object editor 250 then re
turns to step 1612 to await the next user action.

If the user selects the Info option from the object
editor menu (step 1653), then the object editor 250 initi
ates the requester handler for the selected object (step
1654). The object editor 250 then returns to await the
next user action (step 1612). If the user selects the move
option from the object editor menu (step 1655), the
object editor 250 continues operation in step 1750 of
FIG. 16K at which point the object editor awaits the
next user action (step 1750).

Referring to FIG. 16K, the move option of the object
editor 250 will now be explained. First, the object editor
250 determines whether the user has depressed the right
mouse button 112 (step 1751). If yes, the functions of the
move option of the object editor 250 are complete and
flow returns to step 1612 of FIG. 16A to await the next
user action. Otherwise, and if the left mouse button 113
has been depressed by the user while in the move option
of the object editor 250 (step 1752), then the user may
begin dragging the image of a selected object (step
1753) and the object editor 250 awaits the next user
action (step 1750). Otherwise, and if the left mouse
button 113 is released (step 1754), the object editor 250
sets the selected object's coordinates to its new position
in the display screen and displays the object in its new
position (step 1755). The functions of the move option
in the object editor 250 are then complete and flow
returns to step 1612 of FIG. 16A to await the next user
action. Otherwise, if the left mouse button 113 is not up
(step 1754), then the object editor 250 redraws the ob
ject at the current position (step 1756) and awaits the
next user action in the move menu option (step 1750).

Returning to FIG. 16D, the functions of the object
editor 250 will be described further. If the user chooses
the select-front option from the object editor menu (step
1656), the object editor 250 makes the first object in the
display list the selected object (step 1657) and displays
the selected object in its selected state (step 1658). The

10

15

20

25

40
object editor 250 then returns to await the next user
action (step 1612) in FIG. 16A.

If the user selects the select-next option from the
object of their menu (step 1659), the object editor 250
selects the object immediately after the selected object
in the display list and redisplays the object in the select
state of (step 1660). The object editor 250 then returns
to await the next user action (step 1612).

If the user selects the select preview option from the
object editor menu (step 1661), the object editor selects
the object immediately befor the selected object in the
display list and redisplays the object in the selected state
(step 1662). The object editor then returns to await the
next user action (step 1612).
The flow of control of the object editor will now be

described further with reference to FIG. 16E. If the
user selects the size option from the object editor menu
(step 1663), then the operations of the object editor 250
continue in FIG. 16L.

In FIG. 16L, the size function of the object editor
menu first awaits the next user action (step 1750). If the
user depresses on the right mouse button 112 (step
1751), the function of the size option of the object editor
are complete. If the user depresses the left mouse button
113 (step 1752), then the object editor 250 draws a
boundary line on the display screen outlining the size of
the selected object for alteration by the user (step 1753).
The object editor 250 then returns to await the next user
action. If the mouse is then moved (step 1754), the ob

30 ject editor 250 sizes and redraws the boundary lines on

35

40

45

50

55

65

the display screen from the selected object's beginning
point to the current mouse position (step 1755), and then
returns to await the next user action (step 1750). If the
mouse is not moved (step 1754), the object editor 250
returns to await the next user action (step 1750).

Returning to FIG.16E, if the user in the object editor
menu clicks the left mouse button 113 down (step 1664),
then the functions of the left mouse button option of the
object editor main menu are performed. FIG. 16M
outlines the operation of the left mouse button option of
the object editor 250.

First, the object editor 250 determines whether this
left mouse button 113 clicked over an object (step 1760).
If yes, then the object editor 250 next determines
whether this object has been selected (step 1761). If yes,
the object editor 250 next determines whether the user
has clicked the left mouse button 113 within the prede
termined double click time (step 1762). If no, the func
tions of the left mouse button option of the object editor
250 are complete. If the left mouse button 113 has been
double clicked within the predetermined time period
(step 1762), the object editor 250 initiates the appropri
ate requester handler for the selected object (step 1763).
The functions of the object requester handler and object
requesters for objects are substantially the same as those
of the icon requester handler and icon requesters. The
only differences are in the specifics of the definition
process of each object. The object editor 250 then has
completed the left mouse button option.

If the click of the left mouse button 113 was not on
the currently selected object (step 1761), the object
editor 250 unselects the current object and selects a new
object (step 1764). The new object is then the currently
selected object. Again, the functions of the left mouse
option are then complete.

If the mouse was not clicked over an object (step
1760) and the object editor 250 determines that there is
an object currently selected (step 1765), then object

5,317,732 41
editor 250 unselects the current object (step 1766) and
then completes the left mouse button 113 functions. If
no object has been selected (step 1765), the functions of
the left mouse button option are complete.

Returning to FIG. 16E, the remaining functions of 5
the object editor 240 will now be described. In step
1665, the object editor 240 determines whether the "r"
key on the keyboard has been pressed by the user. If
yes, then the add functions of the object editor, de
scribed above with reference to FIG. 16G, are per

- formed to create a rectangle. After the rectangle object
type has been added to the object list or the functions of

10

the add option of the object editor 240 have been com
pleted, the object editor returns to step 1612)
the next user action.

If the user selects the "p" key from the keyboard (step
1665), then the functions of the object editor continue
by adding, using the steps outlined in FIG.16G, to add
a polygon object to the display list. When the functions
the add option of the object editor are complete (FIG.
16G), the object editor 250 then returns to await the
next user action (step 1617). The same functions are
used to add a line object (step 1666), a circle object (step
1667), in ellipse object (step 1668), a text/variable ob
ject (step 1669), a brush object (step 1670), an input field
object (step 1671), and a text window object (step 1672).

If, during the object editor execution, the user presses
the space bar (step 1673), the object editor duplicates
the last action taken by the user (step 1674) and then
returns to await the next user action (step 1612).

If the user chooses the exit option from the object
editor menu (step 1675), then the object editor 250 de
termines whether the user has entered from the pulled
down menu (step 1676). If not, then the functions of the
object editor 250 are complete. If the user has entered
the exit command from the pull down menu (step 1676),
then the object editor 250 determines whether any dis
play objects currently on the display screen 122 have
been modified without those changes being saved to a
file (step 1677). If not, then the functions of the object
editor 250 are complete and the user exists the object
editor. However, if the objects currently being dis
played have been modified (step 1677), then the object
editor 250 generates a message on the display screen 122
requesting whether the user wishes to save the modifi
cations (step 1678). If yes, then the object editor 250
saves the objects to a file (step 1619) and the functions
the object editor are then complete. Otherwise the user
indicates that he or she does not wish to save the
changes and the functions of the object editor 250 are
complete.

H. The Database Editor
The database editor 230 is depicted in FIG. 17 as

being composed of three parts: the database file crea
tion/loading/deletion component 1780, the key specifi
cation editor components 1785, and the record viewer
/editor component 1790. Although those skilled in the
art may recognize that other structures for the database
editor 230 may be used to accomplish the same func

to await
5

20

25

30

35

45

50

55

tions performed by the preferred database editor 230 of 60
the present invention, the preferred database editor 230
has been compartmentalized into these three compo
nents 1780, 1785, and 1790 for purposes explaining eas
ily the operations of this editor. This is not meant to
limit the present invention to this particular structure
for this editor.
The database file creation/loading/deletion compo

nent 1780 performs the combined functions of: 1) load

65

42
ing an existing database file, to allow a) editing of the
file's records by entering the record viewer/editor, b)
deletion of all information (records) in the file, c) modi
fication of the record structure (after deleting any exist
ing records) or 2) specification of a new record struc
ture and creation of the file to allow records to be added
to the database file. The key specification editor 1785
allows initial or derivative specification of the key to be
used when accessing the records in the database and the
record viewer/editor 1790 allows the user to move
throughout the records in the database, viewing and
possibly editing any of the information contained in the
records.

After selecting the database option from a menu of
the preferred implementation, the user is presented with
a database window 1800, like the one depicted in FIG.
18, which allows the user to define a new database file
format, or the loading of an existing database file for
mat. In FIG. 18, the database editor window 1800 has
several familiar gadgets and buttons which will have
already been discussed and will therefore not be dis
cussed again.

If an existing database file is to be accessed, the name
of the file may be specified in the filename field 1805 and
the file is loaded. Once loaded, the structure of the file
is displayed in the middle of the database window 1800
in the database structure field 1810, showing the name,
type, and size of each of the fields in the records con
tained in the database file.
New database files are created by the user by first

defining each field of a record in the database file in the
structure definition field 1810. This requires the user to
define the name, type, and size of the fields using fields
and the gadgets on the right of the database window
1800. To define a typical record in the database file, the
user first enters the name of the field by selecting the
name field 1815 and entering the name in the name field
1815. Then the user selects the type button 1820 until
the selected field type is shown in the type field 1820a.
The user then selects the size of the field in the record
by selecting the size gadget 1830 and entering the num
ber in the size field 1830a specifying the size of the field.
If the new field in the record is a numeric field then the
user selects the "dec" or decimal gadget 1840 to enter
the number of decimal points for the number in the
numeric field 1840a.
When the field information is complete, it may be

inserted into the list 1840 on the left of the database
window 1800 by clicking in the insert button. This pro
cess is repeated until each of the fields is defined. Once
inserted into the list, the fields may be moved about the
record by using the move button 1860 in the database
window 1800.
The delete gadget 1850 permits the user to delete a

field in the record, the insert gadget 1860 permits the
user to insert a new field into the fields displayed in the
record display area 1810. The move gadget 1870 per
mits the user to move a field from one location in the
record to another location in the record and the clear
gadget 1880 permits the user to clear the current infor
mation in the record display area 1810.
When the record structure is complete, a name may

be specified for the new database file and the file is
created by selecting the create button 1885. This pres
ents the user with options to delete the current database
file (gadget 1890), edit data in the current database file
(gadget 1895), or edit keys (gadget 1897) for the current
database file. Keys are used for quick access to the

5,317,732
43

records in the database file by tracking the contents of
selected fields in the records. The exit button 1898 is
used to exit the current window.
Key editing in the database editor 230 is performed

after the edit keys button 1897 is selected. A list of fields
is then displayed on the left in the key window, an
example of which is shown in FIG. 19. For each field to
be used as a key, the user double clicks on its entry in
the list on the left in the key fields list, entering it into
the list on the right list 1920. The order of the fields may
be changed by using the delete button 1930, the insert
button 1940, and move buttons 1950. When the key
selection process is completed, the user indicates this by
clicking on the "OK" button 895 which saves the key
selections to the file, and generates a new index file if
the current file contains any records. The clear button
1960 clears the current list of keys in list 1920.
Once the database file has been created, the contents

of the file may be viewed and/or edited by clicking the
edit data button 1895 in the database window 1800. This
presents the user with the edit database window 2000,
an example of which is illustrated in FIG. 20, for dis
playing information or records contained in a database
file.

In FIG. 20, all fields are shown with their name and
a dark rectangular region 2010 where the contents of
the field may be entered/edited. For example, in FIG.
20, the record consists of the first name field 2013, a last
name field 2016, a birth data field 2012, course number
field 2014, and a paidup 2015 field.

If the record structure of a database file is too large to
be displayed on one window, the previous page and
next page buttons 2015 and 2020, respectively, on the
bottom of the edit database window 2000 may be used
to scroll throughout the record structure. The current
record displayed in the edit database window 2000 (not
illustrated in FIG. 20) may be changed by selecting the
prev or next buttons 2025 and 2030 at the bottom of the
edit database window 2000. The other buttons on the
top row of the edit database window 2000 are for
modification/deletion (buttons 2035 and 2040, respec
tively) of the currently viewed information.
The record # field 2055a allows user to select the

mode for access of the records in the file. If the text

10

15

44
with an abort and retry option for the user to select
(step 2104). If the user selects retry option (step 2105),
then the videodisc controller attempts to initialize the
hardware (step 2102). Otherwise the user has selected
the abort option and the functions of the videodisc
controller are completed (step 2106).

If the initialization was completed satisfactorily, then
the videodisc controller determines whether the user
has entered the controller from an icon requester (step
2107). If yes, then the videodisc controller takes the
existing icon information and sets the initial state of icon
controller (step 2108). If the user did not enter the
videodisc controller from an icon requester, the video
disc controller sets the videodisc system attached to the
platform into the proper mode and if no mode is se
lected, the videodisc controller searches for the first
frame of the current videodisc in the system (step 2109).
Next, the videodisc controller awaits the next user ac
tion (step 2110). At this point the user may input or

20

25

35

reads "record #, pressing the next button 2030 will 45
display the record physically located next in the file. If
the text reads "By Key' pressing the next button 2030
will display the next record as sorted by the associated
key file. Finally, the insert gadget 2060 permits the user
to insert the record in the window 2000 into the data
base file. Other gadgets in the edit database window
2000 have already been described above.

I. The Videodisc Controller
As discussed earlier, the preferred implementation

includes a videodisc controller used to define video
sequences or display selected video frames. FIGS.
21A-21C illustrate a flow diagram of the videodisc
controller of the preferred implementation.

In FIG. 21A, the videodisc controller first begins by
opening a window indicating to the user that he or she
has selected the videodisc option (step 2101). The
videodisc controller then begins by initiating the hard
ware (step 2102). That is, the videodisc controller deter
mines whether the current platform has a videodisc
system connected to it. The videodisc controller then
determines whether the initiating process was com
pleted satisfactorily (step 2103). If no, then the video
disc controller presents an appropriate error message

50

55

65

select different videodisc controller options.
If the user selects the right mouse button 112 (step

2111), then the functions of the videodisc controller
continue in FIG. 21C.

First, the videodisc controller determines whether
the controller window is currently being displayed on
the display screen. If no, then the videodisc controller
opens the controller window to the last known position
and size (step 2172). The videodisc controller then re
turns to FIG. 21A to await the next user action (step

30 2110). If the user presses the right mouse button 112 and
the cursor on the display screen is not inside the con
troller window (step 2174), then the videodisc control
ler closes the controller window for full screen video
viewing (step 2176) and then returns to FIG. 21A to
await the next user action (step 2110). If the user de
presses the right mouse button 112 inside the window
and the controller window is currently on the display
screen (step 2170), and the window is currently at its
full size (step 2178), the video controller then shrinks
the window to a small size (step 2179). If the controller
window is not currently a full size, then the video con
troller resizes the window to full size and repositions
the controller window in the display screen if needed to
fit on the screen (step 2180). The video controller then
returns to FIG. 21A to await the next user action (step
2110).

In the video controller, if the user clicks the left
mouse button 113 inside a button or gadget on the dis
play screen (step 2112), then the videodisc controller
goes through a series of steps to determine which button
or gadget has been selected by the user.

If the user has clicked the left mouse button 113 while
on the help button (step 2113), then the video controller
initiates the help system of the preferred implementa
tion which then displays the appropriate help informa
tion on the display screen (step 2114). When the user
has completed the help system information the video
disc controller returns to await the next user action.

If the user clicks the left mouse button 113 on the M1
or M2 button on videodisc controller window (step
2115), then the videodisc controller retrieves informa
tion from the videodisc system which identifies the
current video frame being displayed and then stores the
retrieved information (step 2116). Otherwise, if the user
clicks on one of the still button, the play button, the
play-rev button, the step button, the step-rev button, the
scan button, the scan-rev button, the slow button, the
slow-rev button, the fast button, the fast-rev button, the

5,317,732
45

video button, the audiol button, the audio2 button, or
the index button (step 2113), the videodisc controller
sends the appropriate command information to a video
disc driver of the videodisc system (step 2117). If the
play button, the slow button or the fast button com
mands have been sent to the videodisc driver, and the
videodisc controller updates the frame display until the
videodisc player's action is changed or stilled (step
2119). The videodisc controller then returns to wait the
next user action (step 2110). .

If the user clicks on the action multi-state button in
the videodisc controller (step 2120), then the videodisc
controller rotates the selection between play, search
and auto-stop options (step 2121). If the user selects the
play option (step 2122), then the videodisc controller
unghosts the start and stop buttons (step 2123). The
videodisc controller then returns to await the next user
action (step 2110). If the play button has been selected
(step 2122), the videodisc controller unghosts only the
frame buttons in the videodisc controller menu (step
2124). The videodisc controller then returns to await
the next user action (step 2110).

If the user selects the Start, Stop, Frame buttons from
the videodisc menu (step 2125), the videodisc controller
allows the user to select either the frame, current frame,
M1 (memory 1), or M2 (memory 2) options (step 2126).
The videodisc controller then stores and displays the
selected information entered by the user in response to
a selected one of the buttons identified in step 2125 (step
2127). The videodisc controller then returns to await
the next user action (step 2110).

If the user clicks the preview button on the videodisc
menu (step 2128), the videodisc controller then deter
mines whether the action multi-state gadget and associ
ated settings have been properly and previously defined
(step 2129). If no, the videodisc controller returns to
await the next user action (step 2110). However, if the
multi-state gadget and associated settings have been
defined (step 2129), then the videodisc controller per
forms the action described by the action multi-state and
associated settings (step 2130). The videodisc controller
then returns to await the next user action (step 2110).

If the user clicks on the cancel button or close win
dow gadget in the videodisc controller (step 2131), then
the videodisc controller closes the window associated
with the videodisc menu if the window was entered
from an icon (step 2132). Note that in this step the
videodisc controller does not modify the data associ
ated with the icon. The videodisc controller processing
is now complete (step 2133). If, however, the user clicks
on the OK button in the videodisc controller menu (step
2134), then the videodisc controller closes the videodisc
window if it is entered from an icon, updates its data to
reflect the current settings of action multi-state and
associated settings (step 2135), and then completes the
videodisc activities (step 2133).

J. The Applications Mover
As described above, the preferred embodiment per

mits the user to create and edit multi-media presenta
tions. Therefore, the presentation created by the user
consists of the flow file or presentation file created in
the flow editor and certain resources which represent
the files used by the created presentation. These re
sources may be files containing sounds, pictures, text,
music, etc. The flow file accesses these resources by
their filename, which specifies where, in the platform
100, the resources can be found.

10

15

20

25

30

35

45

50

55

65

46
If a presentation is to be moved (for example, to an

other platform), all the resources must be moved with
the presentation. And since these resources are no
longer in their original location, all of the references to
these files in the presentation must also be updated. This
is the function of the applications mover component 220
(FIG. 2) of the preferred implementation.

In general, the applications mover 220 will take a
given presentation, scan its flow, copy the flow and
resources to the target location, and adjust the flow's
references to the new location of it's resources. The
applications mover 220 has two modes of operation
which move presentations. The appropriate mode is
selected by the user depending upon the conditions of
the move. The first mode is the create mode in which
the applications mover 220 copies the presentation from
a harddisk drive to one or more floppy disks. The sec
ond or install mode is used to copy a presentation from
one or more floppy disks a to a hard disk. This mode can
also be used to copy a presentation from another loca
tion, e.g., between two hard disks. FIG. 22 illustrates a
flow diagram 2200 of the applications mover 220.

If the user selects the applications mover 220 of the
preferred implementation, as depicted in FIG. 22, the
applications mover 220 first determines whether the
user wishes to move a presentation from a hard disk to
a floppy disk (step 2210). If yes, then the applications
mover 220 create operation is executed (step 2220) and
then the processes of the applications mover 220 are
complete (step 2240). Otherwise, the applications
mover 220 install operation is executed (step 2230) and
then the processes of the applications mover 220 are
complete (step 2240).

If the create operation is initiated (step 2220), the
create operation begins by collecting or awaiting user
input, e.g., the name of the flow file to be copied, the
name of the presentation in the target, and which floppy
disk drives to use. The applications mover 220 then
reads the presentation and scans the presentation struc
ture for resources. For each reference to a resource in
the presentation, the applications mover 220 ensures
that a resource node exists in the resource name list
generated by the applications mover 220 during opera
tion. If the applications mover 220, while scanning the
presentation structure encounters a new resource, then
the applications mover 220 creates a new resource node
and adds it to the resource name list. There is only one
resource node in the resource list of a presentation for
each resource used by the presentation.

During this scan process, the applications mover 220
also creates a resource reference list, as part of the re
source node, which contains a list of references, one
entry for every reference in the presentation structure
to the resource. Each entry on the resource reference
list identifies what in the presentation to be moved is
referring to the resource and the context of the refer
ence. When the applications mover 220 scans a presen
tation structure and identifies a resource reference, the
applications mover 220 creates a resource reference
node linking the resource node with this reference.
Some icons in a presentation may reference more than
One eSOCe.

After the presentation structure is scanned, the re
source name list is scanned by the applications mover
220 three times. In the first pass, the applications mover
220 collects all information on each resource. In the
second pass, for each non-existent resource (or resource
which does not reside on the source disk), the user is

5,317,732 47
prompted to substitute another file, skip the file, or
abort. In the third pass, the application mover 220 en
sures that each resource is small enough to store on a
floppy disk. If a resource is too large to fit on a floppy
disk, then the applications mover 220 permits the user to
substitute another file, skip the file, or abort.

After the three pass scan of the resource name list, the
applications mover 220 creates a log file which includes
a log of unusual or important events, e.g., user-sub
stituted files, files skipped because of user command or
because they are too large.

Next, the applications mover 220 assigns new destina
tion names to the resource nodes by assigning them to
floppy disks. This process includes sorting the resource
nodes in the resource name list in descending-size order.
The sorted resource name list is then scanned and for
each resource name not yet assigned, the applications
mover 220 sees if it will fit on the current floppy disk. If
it will fit on the current floppy disk, then the applica
tions mover 220 marks the resource as assigned, and
gives it a destination name referring to the location on
that floppy disk. If the resource will not fit on the cur
rent floppy, then the applications 220 mover skips that
resource in the resource name list and continues with
the next resource node. This process is repeated until all
resource nodes are assigned to the floppy disks.

Next, the applications mover 220 updates the re
source references in the presentation with the new re
source name destination. Using the resource reference
list, every reference in the presentation is adjusted to
use the new name assigned to the resource nodes. Then
the applications mover 220 informs the user of the num
ber of floppy disks required to copy this presentation.
At this point the user may abort the applications mover.
220 if desired.

If the applications mover 220 is not aborted, then the
applications mover 220 copies the resource to the
floppy disks selected at the beginning of the applica
tions mover 220 procedure, and asks the user to insert
each disk for copying. Then the applications mover 220
copies the updated presentation, log file, and all re
sources to the assigned destination disks. During the
copying process, the user will be prompted to swap
disks in the floppy disk drive when necessary.

Finally, when the presentation copying is complete,
the applications mover 220 permits the user to review
the log file generated during the copying process.

If the user selects the applications mover 220 install
procedure, then the applications nover 220 collects
input, e.g., the presentation file to be copied, the desti
nation name for the presentation to be copied, and the
target location for resources used by the presentation.
The install operation of the applications mover 220
offers more control on where resources are to be stored
in the destination hard disk. After collecting input, the
applications mover 220 reads the presentation file to be
copied. In a manner similar to the scanning process
discussed above with reference to the applications
mover 220 create process, the applications mover 220 in
the install process next scans the presentation structure
for resources.

After scanning the presentation structure for re
sources, the applications mover 220 then scans the re
source name list, generated during the presentation
scanning process, in two passes. In the first pass of the
resource name list, the applications mover 220 collects
information about each resource, e.g., file type and file
size. In the second pass, the applications mover 220, for

10

15

20

25

30

35

45

50

55

65

48
each non-existent resource (or a resource identified in
the presentation yet not resident in the source disk),
permits the user to substitute another file, skip the file,
or abort.

Next, the applications mover 220 creates the log file
in a manner similar to the process used by the applica
tions mover 220 in the create mode. After the log file is
created, the applications mover 220 assigns new destina
tion names for the resource names in the resource name
list. That is, for each resource name in the list, the appli
cations mover 220 assigns it a new name depending
upon the file-type. The applications mover 220 then
updates the resource references in the presentation to
the new destination names. Using the resource refer
ence list, the applications mover 220 traverses the pre
sentation structure locating every reference in the appli
cation to a resource and adjusting the references to use
the new name assigned to the resource names.
The applications mover 220 then copies the resources

to specified destinations (e.g., harddisks) and when
copying is finished, the applications mover 220 permits
the user to review the log file.

K. The Evaluator
The evaluator 240 (FIG. 2) is another important com

ponent of the preferred implementation of the present
invention and is used to evaluate (or execute) presenta
tions on the platform 100 (FIG. 1). FIGS. 23A-23G
illustrate a flow diagram 2300 of the preferred evaluator
of the present invention.
When the evaluator 240 begins operation, it initializes

the evaluation environment (Step 2301). The evaluation
environment includes all information describing the
current state of the evaluator 240. The dynamic part of
this environment is the runtime return stack. The run
time return stack stores ENodes which are described
below. As is shown in FIG. 23C, step 2334, whenever
the evaluator 240 beings operating on a parent's chil
dren, an ENode is added to this stack which retains the
state of the evaluator 240 at the time of the parent's
evaluation. When the children have all been evaluated,
the top ENode is removed from the runtime return
stack, and evaluation continues with the icon immedi
ately following the parent. When the evaluator begins
operation, this stack is initialized to an empty state.

Next, the evaluator 240 opens the initial presentation
screen (step 2302).
The evaluator 240 then attempts to locate the first

icon in the application presently being evaluated (step
2303). If no icon is located (step 2303), then the evalua
tor 240 closes the presentation screen and frees the
resources allocated by the evaluator in step 2301 which
were anticipated for the presentation of the application
(step 2347). The operations of the evaluator are then
complete (step 2348).

If the evaluator 240 identifies the first icon in the
application under evaluation (step 2303), then the evalu
ation process begins by identifying the icon associated
with each data structure in the application, for example,
FIGS. 9A-9B. First, the evaluator 240 determines
whether the icon is a call icon (step 2304). If yes, then
the evaluator 240 determines whether the call icon has
a reference icon (partner) associated with the call icon
(step 2305). If a reference icon has been defined for this
call icon (2305), then the evaluator 240 locates the sub
routine on the Rootevent's child list (step 2306). The
RootBvent is the event structure that contains the com
plete presentation. All events and commands in the
presentation are its descendents, with all the icons in the

5,317,732 49
left-most column of the presentation being found on the
Rootevent's child list. If a subroutine is located on the
Rootevent's child list (step 2306), the PushENode pro
cedure is executed to save the current state (step 2307).
The PushENode procedure is illustrated in FIG.23F.

When the evaluator 240 begins the PushBNode proce
dure, the evaluator 240 first allocates memory in the
platform 100 for the ENode (step 2380). The evaluator
240 then saves the current state to the ENode including,
the current parent, the current icon, the current evalua
tor state, and the current Loop value (step 2381). Then,
the evaluator 240 adds the ENode to the runtime return
stack (step 2382). In this case, the information contained
in the ENode will be used by the evaluator 240, after the
subroutine has finished, to restore the environment at
the time the call was made.

After step 2307 is executed, the processes of the eval
uator 240 continues with step 2334 of FIG. 23C. In step
2334, the PushBNode routine of FIG. 23F is executed
for the subroutine icon and the evaluator 240 attempts
to locate the first child icon for this subroutine (step
2334). The evaluation process then returns to step 2304
of FIG. 23A to determine what the next type of icon in
the presentation is.

If in step 2306 the evaluator 240 does not locate the
subroutine on the Rootevent's child list, then the evalu
ator 240 determines whether an exit flag has been set
(step 2335). If the exit flag has been set (step 2335), then
the evaluator 240 executes the PopENode for the previ
ous parent (step 2341).
The PopENode procedure is illustrated in FIG.23G.

When the evaluator 240 begins the PopENode proce
dure, it first determines whether there is an ENode to be
removed from the runtime return stack (step 2390). If
no, then the PopeNode procedure is complete and
returns a false to step 2341 (FIG. 23C) of the evaluator
240 process. If however, there is an ENode to be re
moved from the runtime return stack (2390), then the
evaluator performs several functions. First, the evalua
tor 240 restores the current parent, current icon, evalua
tor state, and current Loop Value (step 2391) from the
removed ENode. After the evaluator 240 performs a
cleanup of all transient attributes for the parent stored in
ENode taken off of the runtime return stack (step 2392),
the evaluator 240 then determines whether more
ENodes need to be popped to reach a proper runtime
return stack (step 2390). For example, multiple ENodes
may need to be popped to exit a loop. If yes, then the
processes of the evaluator 240 return to step 2390 of
FIG. 23G. Otherwise, the processes of the PopENode
procedure are complete.

If the PopeNode for the previous parent in step 2341
evaluates as true, then the evaluator 240 determines
whether an exit flag has been set (step 2342). If yes, then
the step 2341 is executed again. The exit flag is set when
a quit icon is found in the presentation, as described
below in reference to step 2327. Otherwise, the evalua
tor determines whether the current icon was suspended
for operation of an interrupt (step 2343). If no, then the
evaluator 240 continues on FIG. 23D and first deter
mines whether the current icon is a subroutine or an
interrupt (step 2345). If yes, the evaluator 240 returns to
step 2341 of FIG. 23C. If no, the evaluator 240 deter
mines whether the last parent should be re-evaluated
(i.e., loop action) (step 2346). If yes, then the processes
of the evaluator 240 return to step 2304 of FIG. 23A.
Otherwise, if the last parent should not be re-evaluated
(step 2346) then the evaluator 240 returns to step 2340

10

20

25

30

35

45

50

55

60

65

50
of FIG. 23C to determine whether it is required to find
the next sibling icon (step 2340). As discussed earlier, if
step 2340 evaluate is true, then processes continue in
step 2304 of FIG. 23A.

In FIG. 23A, if the evaluator 240 is attempting to
evaluate a conditional icon (step 2308), then the evalua
tor 240 begins by determining whether the evaluation of
the conditional icon is true (step 2309). If the condition
as evaluated is true (step 2309), then the evaluator 240
determines whether the conditional icon is a conditional
goto icon (step 2310). If it is a conditional goto icon,
then the evaluator 240 determines whether the refer
enced icon (partner) is a child of any of the events on
the runtime return stack (step 2313). If yes, then the
evaluator then determines whether the referenced icon
(partner) is a child of the current parent (step 2314). If
yes, then the evaluator sets up for execution of the refer
enced icon (step 2316). The evaluator 240 then contin
ues operation in step 2334 of FIG. 23C (discussed ear
lier). If the referenced icon is not a child of the current
parent (step 2314) then the evaluator 240 performs the
PopENode procedure illustrated in FIG. 23G (step
2315). This has the effect of returning to the runtime
return stack state of the referenced icon. When this state
is reached, the popping action of the PopFNode proce
dure is stopped and the evaluator 240 continues with the
referenced icon.

If the referenced icon is not a child of any of the
events on the runtime return stack (step 2313), then the
evaluator 240 determines whether an exit flag has been
set (step 2335) in FIG. 23C. If yes, then the processes of
the evaluator 240 continue in step 2341 (discussed
above). If the exit flag has not been set (step 2335), then
the evaluator 240 determines whether the current icon
is an if then else icon that had its true (partner) action
performed (step 2336). If no, then the evaluator 240
continues in step 2340 (discussed above). If the if-then
else icon had its true action performed (step 2336), then
the evaluator 240 attempts to locate the next sibling icon
to the if then else icon (step 2337). If no sibling icon is
located (step 2337) then the evaluator 240 continues in
step 2341 (discussed above).

If the next sibling icon is found (step 2337), then the
evaluator 240 then considers whether the current icon is
indeed an if-then-else icon (step 2338). If yes, then the
evaluator returns to step 2337. Otherwise, the evaluator
240 attempts to find the next sibling icon to the current
icon (step 2339). If the next sibling icon is located (step
2339), then the evaluator 240 continues its evaluation
process in step 2341 (discussed above). If the next sib
ling icon is located then the processes of the evaluator
240 continue in step 2341 of FIG. 23A.

Returning FIG.23A, if the evaluator 240 attempts to
evaluate a goto icon (step 2312), then the evaluator 240
begins by determining whether the referenced icon is a
child of any of the events of the runtime return stack
(step 2313). If yes, then the processes of step 2314 and
all other processes associated with the conditional goto
icon discussed above are performed.

In FIG. 23B, if the evaluator 240 attempts to evaluate
a return icon (step 2317), then the evaluator first deter
mines whether it is currently executing the children of
a subroutine (step 2318). If no, then the evaluator con
tinues in step 2335 of FIG. 23C. If the return icon is
inside a subroutine (step 2318), then the PopBNode
procedure of FIG. 23G is executed (step 2319). The
evaluator 240 then determines whether the ENode
popped using the PopENode procedure is the subrou

5,317,732
51

tine (2320). If no, then the evaluator 240 returns to step
2319. Otherwise, if the PopBNode is the subroutine
(step 2320), then the evaluator 240 performs the PopE
Node procedure illustrated in FIG. 23G again to restore
state before the call (2321). That is, the PopeNode
procedure is executed to return to the location in the
application of following the initiation of a subroutine.

In FIG. 23B, if the evaluator 240 identifies in the
application an exit loop or an exit form icon (step 2322),
then the evaluator 240 determines whether the applica
tion currently running is inside the loop or a form (step
2324). If no, then the processes of step 2335 are exe
cuted. Otherwise, the PopENode procedure of FIG.
23G is executed (step 2325). If the PopNode using the
PopBNode procedure is the parent node for the loop or
form (step 2326), then the evaluator 240 continues in
step 2325 of FIG. 23C. Otherwise, the evaluator 240
returns to step 2325.

If the evaluator 240 identifies a quit icon in an appli
cation (step 2327), then the evaluator 240 sets the exit
flag (step 2328) and continues in step 2325 of FIG. 23C.

Otherwise, the evaluator 240 must perform the ac
tions associated with the icons being evaluated (step
2329). The icon processing is illustrated in FIG. 23E.

In FIG. 23E, the evaluator 240 first begins by initiat
ing actions of an icon (step 2360). The actions of an icon
depend on the type of that icon. For example, a screen
icon sets the background resolution, image, etc., while a
Module icon performs the evaluation of all expressions
defined by it, and an Animation icon starts the playback
of the specified animation (described above). The evalu
ator 240 then determines whether the current icon is a
wait icon which requires a reaction from the user
(2361). If yes, then the evaluator awaits the user action
(2362). If the user action has been performed (step
2363), then the processing of the evaluator 240 contin
ues in step 2330 of FIG. 23B. If the user action has
caused an interrupt (step 2364), the processing of the
evaluator 240 also continues in step 2330 of FIG. 23B.
Otherwise, the evaluator 240 returns to await the user
action (step 2362).

If the current icon is not one which requires reaction
from the user (step 2361), the evaluator 240 determines
whether the current icon may pause the evaluation until
it completes (step 2365). If no, the processing of the
evaluator continues in step 2330 of FIG.23B. If a pause
is applicable to the current icon (step 2365), the evalua
tor 240 determines whether the user has selected the
pause (step 2366). If no, the evaluator 240 continues
with step 2330 of FIG. 23B. If however the pause has
been selected (step 2366), then the evaluator 240 awaits
any user action while monitoring for the completion of
the current icon action (step 2367). If the action of the
current icon is completed (step 2368), the evaluator 240
continues in step 2330 of FIG. 23B. If however the
action of the icon is not completed (step 2368), then the
evaluator 240 determines whether the user's action
caused an interrupt in the processing of the current icon
(step 2369). If the user's action has not caused an inter
rupt (step 2369), the evaluator 240 returns to step 2367.
Otherwise, the evaluator continues in step 2330 of FIG.
23B.

After the processing of FIG. 23E has been completed
(step 2329), the evaluator 240 then determines whether
an interrupt icon occurred (step 2330). If yes, then the
evaluator executes the PushBNode procedure of FIG.
23F to save the current state of the application, sets up
for appropriate interrupt processing, and performs the

10

15

20

25

30

35

45

50

55

65

52
PushENode procedure for interrupt tracking process
ing (step 2331). The evaluator then locates the inter
rupt's first child (step 2332). After the interrupt child is
located (step 2332), the processing of the evaluator
returns to step 2304 of FIG. 23A.

If however, an interrupt did not occur (step 2330),
then the evaluator considers whether the current icon is
a parent with children that should be evaluated immedi
ately (step 2333). If the current Node is a parent node
with children that should be evaluate immediately (step
2333), then the evaluator continues in step 2334 of FIG.
23C (discussed above). If however the current icon is
not a parent with children that should be evaluated
immediately (step 2333), then the evaluator continues
the processing in step 2335 of FIG. 23C (discussed
above).

Using the procedures outlined in FIGS. 23A through
23E, the evaluator of the preferred implementation
traverses the application structure exemplified in FIGS.
9A-9B to present the application under evaluation.

VII. SUMMARY
In particular, the preferred implementation of the

present invention solves the problems of conventional
multimedia authoring systems as well as conventional
visual programming systems by providing for a graphic
interface display which is implemented as a part of a
flow editor and is used to create and to program interac
tive multimedia presentations and coursework. Addi
tionally, the present invention also includes other edi
tors (e.g., a database editor, an expression editor, and an
object editor) used to perform other editing functions
required to create presentations. Furthermore, this in
vention includes control systems (e.g., an applications
mover, a videodisc controller, and a help system) which
also enable the user to create, program and execute
interactive multimedia presentations. Finally, this in
vention includes an evaluator which evaluates a pro
grammed presentation (or application) and implements
the presentation.

Persons of ordinary skill will recognize that modifica
tions and variations may be made to this invention with
out departing from the spirit and scope of the general
inventive concept. This invention in its broader aspects
is therefore not limited to the specific details or repre
sentative methods shown and describe.
We claim:
1. In a data processing system having a first memory

and a second memory, wherein the first and second
memories are adapted for storing a plurality of multime
dia presentations and a plurality of resources, wherein
each one of the plurality of multimedia presentations
includes a plurality of linked data structures, wherein a
plurality of the linked data structures identify a plurality
of resources each having a name including a location
identifier, the method comprising the steps performed
in the data processing system of:

receiving an input selecting one of the multimedia
presentations to be relocated from the first memory
to the second memory;

scanning the linked data structures of the selected
multimedia presentation to determine the plurality
of resources identified by the selected multimedia
presentation;

generating a resource-name list of names including
location identifiers corresponding to the plurality
of resources identified by the selected multimedia
presentation;

5,317,732 53
changing the location identifiers on the resource
name list;

updating the names of the identified plurality of re
sources in the selected multimedia presentation to
reflect the changed location identifiers on the re
Source-name list; and

relocating the updated multimedia presentation and
the resources listed on the resource-name list to the
second memory.

2. The method of claim 1 wherein the plurality of
multimedia presentations have a size in the first memory
and the plurality of resources have a size in the first
memory, and wherein the scanning step includes the
substep of:

determining the size of the selected multimedia pre
sentation.

3. The method of claim 2 wherein the generating step
includes the substep of:

generating in the resource-name list the size in the
first memory of each one of the corresponding
resources identified by the selected multimedia presentation.

4. The method of claim 3 wherein the data processing
system is further comprised of a third memory and the
first memory is of a predetermined size and the second
memory is of a predetermined size, wherein the size of
the second memory is less than the size of the first mem
ory, wherein the size of the selected multimedia presen
tation and the size of the plurality of resources in the
resource-name list are greater than the size of the sec
ond memory, and wherein the relocating step includes
the substep of:
moving the updated multimedia presentation and the

plurality of resources corresponding to the updated
multimedia presentation to the second and third
memories. .

5. A multimedia presentation and resource allocation
system in a data processing system having a first mem
ory and a second memory, wherein the first and second
memories are adapted for storing a plurality of multime
dia presentations and a plurality of resources, wherein
each one of the plurality of multimedia presentations
includes a plurality of linked data structures, wherein a
plurality of the linked data structures identify a plurality
of resources each having a name including a location
identifier, the system comprising:

10

15

20

25

30

35

45

SO

55

65

54
means for receiving an input selecting one of the
multimedia presentations to be relocated from the
first memory to the second memory;

means for scanning the linked data structures of the
selected multimedia presentation to determine the
plurality of resources identified by the selected
multimedia presentation;

means for generating a list of names including loca
tion identifiers corresponding to the plurality of
resources identified by the selected multimedia
presentation;

means for changing the locating identifiers on the
generated list;

means for updating the names of the identified plural
ity of resources in the selected multimedia presen
tation to reflect the changed location identifiers on
the generated list; and

means for relocating the updated multimedia presen
tation and the resources listed on the generated list
to the second memory.

6. The system of claim 5 wherein the plurality of
multimedia presentations have a size in the first memory
and the plurality of resources have a size in the first
memory, wherein the scanning means comprises:
means for determining the size of the selected multi
media presentation.

7. The system of claim 6 wherein the generating
means comprises:
means for generating in the list of names the size in

the first memory of each one of the corresponding
resources identified by the selected multimedia
presentation.

8. The system of claim 7 wherein the data processing
system is further comprised of a third memory and the
first memory is of a predetermined size and the second
memory is of a predetermined size, wherein the size of
the second memory is less than the size of the first mem
ory, wherein the size of the selected multimedia presen
tation and the size of the plurality of resources in the list
of names are greater than the size of the second mem
ory, and wherein the relocating means comprises:
means for moving the updated multimedia presenta

tion and the plurality of resources corresponding to
the updated multimedia presentation to the second
and third memories.

sk

