Pi – Kreiszahl (1.000.000 Stellen)

geschrieben von Andreas Potthoff | 10. Oktober 2020
Pi (1 Million Stellen) als e-Text.

3.

1415926535	8979323846	2643383279	5028841971	6939937510
5820974944	5923078164	0628620899	8628034825	3421170679
8214808651	3282306647	0938446095	5058223172	5359408128
4811174502	8410270193	8521105559	6446229489	5493038196
4428810975	6659334461	2847564823	3786783165	2712019091
4564856692	3460348610	4543266482	1339360726	0249141273
7245870066	0631558817	4881520920	9628292540	9171536436
7892590360	0113305305	4882046652	1384146951	9415116094
3305727036	5759591953	0921861173	8193261179	3105118548
0744623799	6274956735	1885752724	8912279381	8301194912
9833673362	4406566430	8602139494	6395224737	1907021798
6094370277	0539217176	2931767523	8467481846	7669405132
0005681271	4526356082	7785771342	7577896091	7363717872
1468440901	2249534301	4654958537	1050792279	6892589235
4201995611	2129021960	8640344181	5981362977	4771309960
5187072113	4999999837	2978049951	0597317328	1609631859
5024459455	3469083026	4252230825	3344685035	2619311881
7101000313	7838752886	5875332083	8142061717	7669147303
5982534904	2875546873	1159562863	8823537875	9375195778
1857780532	1712268066	1300192787	6611195909	2164201989

Download:

Pi – Kreiszahl (1.000.000 Stellen)

1 Datei(en) 1.34 MB Download

These digits came from Scott Hemphill (see forwarded message). ***Forwarded Messages From Our Original Source*** I computed the digits of pi using Borwein's method. I used a divide-and-conquer multiply routine, hand coded in 68020 assembly language. It was capable of multiplying two 1.25+ million digit numbers in about 20 minutes on an HP 9000/370 (a 25MHz 68030?). The computation took a little over three days, at which point I had the answer in *binary*.
The binary to decimal conversion was no simple task. I checked my results by performing the same calculation to 2.5 +million digit precision, (9 days) and compared the binaries. The only independent check has come from David Bailey, whose results agree with mine to at least 1 million digits (probably.... The last 100 digits are the same.) Scott Scott Hemphill hemphill@csvax.cs.caltech.edu ...!ames!elroy!cit-vax!hemphill ***End of Forwarded Messages*** The file should fit uncompressed on a 1.44M floppy, is a million

and a quarter digits of Pi. We are also working on one billion. The tail has also been checked against the 400 million digits we have already received from Mr. Kanada of Japan, and we also hope to check against the figures we expect from the Chudovsky Bros.

The digits are arranged in groups of 1,000 in an array of five sets of ten digits per line in twenty lines to a screen with four blank lines between groups of 1,000 so search programs such as LIST can be used to scan in page mode keeping the groups of 1,000 screen centered.

While we cannot guarantee accuracy, these figures have been compared on several occasions with others and are apparently in agreement. However, remember that there is a possibility of transmission and other errors.