Wissenschaftsteam intensiviert Forschung an Lithium-Schwefel-Batterien

Internationales Verbundprojekt „AReLiS-3“ startet am MEET Batterieforschungszentrum der Universität Münster

In dem internationalen Verbundprojekt „AReLiS-3“ setzt das MEET Batterieforschungszentrum der Universität Münster seine Forschung an Lithium-Schwefel-Batterien fort. Ziel des Projekts ist es, neuartige Zelldesigns, Materialien, Elektrodenbeschichtungen und Elektrolyte für schwefelbasierte Batteriesysteme zu entwickeln, zu untersuchen und zu optimieren. So möchte das Team die bisher noch rasante Alterung der Batteriezellen abfedern und den Weg für den technologischen und industriellen Durchbruch ebnen. Aufbauend auf den Ergebnissen der Vorgängerprojekte steht die noch tiefergehende Charakterisierung der Elektrodengrenzflächen im Fokus: Die Grenzflächen der Elektroden beeinflussen maßgeblich die Performanz der Zellen. Gleichzeitig treten dort besonders häufig negative Alterungseffekte auf. Das Bundesministerium für Bildung und Forschung fördert die deutschen Partner in dem auf knapp zweieinhalb Jahre angelegten Projekt mit rund 1,9 Millionen Euro.

Das Forschungsteam wird die elektrochemischen Prozesse innerhalb der Zellen mittels komplementärer analytischer Methoden weiter entschlüsseln. Ergänzend zu den schwefelbasierten Kathoden untersuchen die Wissenschaftlerinnen und Wissenschaftler konventionelle Kathoden auf Nickel-Mangan-Kobalt-Basis und vergleichen sie miteinander. „Um einen weiteren Schritt in Richtung Anwendung zu gehen, werden wir die vielversprechendsten Lithium-Schwefel-Konzepte unter industrienahen Aspekten hochskalieren sowie in Pouch-Zellen zyklisieren, also mehrfach laden und entladen, und untersuchen“, erklärt Projektmanager Dr. Simon Wiemers-Meyer, stellvertretender Leiter des Forschungsbereichs „Analytik & Umwelt“ am MEET Batterieforschungszentrum.

Zum Hintergrund: Viele bisherige Lithium-Schwefel-Konzepte kämpfen mit dem Alterungsphänomen, dass sich im Elektrolyten lösliche Polysulfide an der Kathode bilden. Das verursacht eine irreversible Ablagerung von Schwefelspezies an der Anode. Die Folge: Bereits nach wenigen Lade- und Entladezyklen kann die Kapazität der Lithium-Schwefel-Batterien auf ein niedriges Niveau sinken. Ein Ansatz, dem entgegenzuwirken, ist die Verwendung fester Elektrolyte. In den Vorgängerprojekten „AReLiS-1 und -2“ haben sich die Wissenschaftler deshalb mit den Reaktionen der Kathoden in flüssigen, festen und hybriden Elektrolyten beschäftigt. Enormes Potenzial für langzeitstabile Lithium-Schwefel-Batterien liegt etwa in der Verwendung reiner Polymer-, Fest- und Hybridelektrolyte. Diese Elektrolyte reduzieren nicht nur die Polysulfid-Migration, sondern können auch dazu beitragen, die Aktivmaterialien verstärkt auszunutzen. Auf Basis der tieferen Einblicke in die chemischen Prozesse entwickelte das Team neue Materialien für Lithium-Schwefel-Konzepte sowie neue Methoden für deren Analyse.

In dem Projekt arbeiten das Team des MEET gemeinsam mit Wissenschaftlern des Helmholtz Instituts Münster des Forschungszentrums Jülich, der Technischen Universität Dresden, dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (Fraunhofer IWS) Dresden, der Waseda Universität (Japan), dem National Institute of Advanced Industrial Science and Technology (Japan), der Tohoku Universität (Japan) sowie der Kyushu Universität (Japan). Die Projektlaufzeit ist von November 2023 bis März 2026.

Links:

Quelle: Pressemitteilung / Pressestelle der Universität Münster (upm)




Kosmische Bausteine des Lebens im Elektronenmikroskop entdeckt

Forschungsteam analysiert extraterrestrische Aminosäuren und andere organische Verbindungen in einem englischen Meteoritenfall zum ersten Mal ohne chemische Behandlung

Meteorite sind Bruchstücke von Asteroiden, die als Sternschnuppen ihren Weg auf die Erde finden. Diese kosmischen Sedimente haben die Ur-Suppe, aus denen unser Sonnensystem entstanden ist, wie eine Zeitkapsel eingefroren. Mithilfe dieser Gesteine können Wissenschaftlerinnen und Wissenschaftler dem Ursprung unserer Materie und des Lebens auf der Erde auf den Grund gehen. Dr. Christian Vollmer vom Institut für Mineralogie der Universität Münster hat mit britischen Kollegen eine ganz besondere dieser Zeitkapseln untersucht: den Winchcombe-Meteoriten. Dem Forschungsteam ist es erstmals gelungen, einige wichtige stickstoffhaltige Verbindungen wie Aminosäuren und heterocyclische Kohlenwasserstoffe ohne chemische Behandlung mit hoher Präzision und mithilfe eines neuartigen Detektordesigns in diesem Meteoriten nachzuweisen. Die Ergebnisse sind nun in der Fachzeitschrift „Nature Communications“ erschienen.

Zum Hintergrund

Der Winchcombe-Meteorit wurde im Februar 2021 von einem Kameranetzwerk in England beobachtet und konnte innerhalb weniger Tage aufgesammelt werden. „Normalerweise werden Meteorite in den kalten und heißen Wüsten dieser Erde aufgespürt, wo sie im trockenen Klima zwar nicht sehr schnell verwittern, sich aber durch Feuchtigkeit verändern. Wird ein Meteoritenfall zeitnah beobachtet und schnell eingesammelt, wie es bei Winchcombe der Fall war, sind sie für uns wichtige ‚Zeugen‘ von der Geburt des Sonnensystems und daher für die Forschung besonders interessant“, betont Christian Vollmer.

Der Ursprung des Lebens auf unserem Planeten ist noch immer ungelöst, und manche Wissenschaftler vermuten, dass die ersten biorelevanten Stoffe vor über vier Milliarden Jahren in Meteoriten auf die Erde transportiert wurden. Dazu zählen beispielsweise komplexe organische Verbindungen wie Aminosäuren oder Kohlenwasserstoffe. Diese Moleküle haben jedoch nur sehr geringe Konzentrationen und Experten müssen sie meistens durch Lösungsmittel oder Säuren aus dem Meteoriten herauslösen und für die Analysen anreichern. Das Team um Christian Vollmer konnte diese biorelevanten stickstoffhaltigen Verbindungen nun zum ersten Mal ohne vorherige chemische Behandlung im Winchcombe-Meteoriten nachzuweisen, obwohl auch hier die Konzentrationen dieser Stoffe sehr gering sind. Dazu nutzten die Forscher ein modernes, hochauflösendes Elektronenmikroskop, das es weltweit nur an wenigen Standorten gibt. Dieses „Super-Mikroskop“ am „SuperSTEM“-Labor im englischen Daresbury bildet nicht nur kohlenstoffreiche Verbindungen in atomarer Auflösung ab, sondern kann auch mithilfe eines neuartigen Detektors diese Proben chemisch analysieren. „Der Nachweis dieser biorelevanten organischen Verbindungen in einem unbehandelten Meteoriten ist für die Forschung eine wichtige Errungenschaft. Er zeigt, dass diese Bausteine des Lebens auch ohne die chemische Extraktion in diesen kosmischen Sedimenten charakterisiert werden können“, erläutert Christian Vollmer. Die chemische Behandlung birgt nämlich das Risiko, dass sich diese fragilen Stoffe verändern könnten. Die hier angewandten Analyseverfahren an festem Material sind deshalb auch für die Forschung an kleinen und wertvollen Missionsproben von großer Bedeutung, wie etwa den kürzlich von Asteroiden zur Erde zurückgebrachten Staubpartikeln der japanischen Raumfahrtbehörde (Hayabusa2) und der NASA (OSIRIS-REx).

Die Arbeit erhielt finanzielle Unterstützung durch die Deutsche Forschungsgemeinschaft im Rahmen des Schwerpunktprogramms SPP1833 „Building a habitable Earth“.

Originalpublikation

Vollmer, C., Kepaptsoglou, D., Leitner, J. et al. High-spatial resolution functional chemistry of nitrogen compounds in the observed UK meteorite fall Winchcombe. Nat Commun 15, 778 (2024). Doi: 10.1038/s41467-024-45064-x

Links:

Quelle: Pressemitteilung / Pressestelle der Universität Münster (upm)




Mondgestein mit einzigartigem Staub gefunden

Forschungsteam untersucht Wechselwirkung von Staub mit Gesteinsbrocken und entdeckt potenziell anomalen Felsen

Der Mond unserer Erde ist fast vollständig mit Staub bedeckt. Anders als auf der Erde ist dieser Staub nicht durch Wind und Wetter glatt geschliffen, sondern scharfkantig und zusätzlich elektrostatisch aufgeladen. Bereits seit der Apollo-Ära Ende der 1960er-Jahre wird dieser Staub untersucht. Nun hat ein internationales Forschungsteam unter der Leitung von Dr. Ottaviano Rüsch von der Universität Münster erstmals besondere metergroße Felsen auf der Mondoberfläche entdeckt, die mit Staub bedeckt sind und vermutlich einzigartige Eigenschaften aufweisen – etwa magnetische Anomalien. Die wichtigste Erkenntnis der Wissenschaftler ist, dass nur sehr wenige Felsblöcke auf dem Mond eine Staubschicht mit speziellen Reflexionseigenschaften haben. Zum Beispiel reflektiert der Staub auf diesen neu entdeckten Felsblöcken das Sonnenlicht anders als auf bisher bekannten Gesteinen. Diese neuen Erkenntnisse helfen den Wissenschaftlern, Prozesse zu verstehen, die die Mondkruste bilden und verändern. Die Studienergebnisse sind im Fachjournal „Journal of Geophysical Research – Planets“ erschienen.

Es ist bekannt, dass es auf der Mondoberfläche magnetische Anomalien gibt, insbesondere in der Nähe einer Region namens Reiner Gamma. Die Frage, ob Gesteinsbrocken magnetisch sein können, wurde jedoch noch nie untersucht. „Das derzeitige Wissen über die magnetischen Eigenschaften des Mondes ist sehr gering, sodass diese neuen Gesteine Aufschluss über die Geschichte des Mondes und seines magnetischen Kerns geben werden“, ordnet Ottaviano Rüsch vom Institut für Planetologie die Entdeckung ein. „Dazu haben wir erstmals die Wechselwirkungen von Staub mit Gesteinsbrocken in der Reiner-Gamma-Region untersucht – genauer gesagt die Variationen in den Reflexionseigenschaften dieser Gesteine. Beispielsweise können wir daraus ableiten, zu welchem Anteil und in welche Richtung das Sonnenlicht von diesen großen Felsen reflektiert wird.“ Die Aufnahmen wurden von der NASA-Raumsonde Lunar Reconnaissance Orbiter durchgeführt, die den Mond umkreist.

Ursprünglich war das Forschungsteam an zerklüfteten Gesteinsbrocken interessiert. Sie hatten zunächst mithilfe künstlicher Intelligenz etwa eine Million Bilder nach solchen Gesteinsbrocken durchsucht – diese Aufnahmen stammen ebenfalls vom Lunar Reconnaissance Orbiter. „Moderne Datenverarbeitungsmethoden ermöglichen uns komplett neue Einblicke in globale Zusammenhänge – gleichzeitig finden wir auf diese Weise immer wieder unbekannte Objekte, so wie die anomalen Gesteinsbrocken, die wir in dieser neuen Studie untersuchen“, sagt Valentin Bickel vom Center for Space and Habitability der Universität Bern. Der Suchalgorithmus identifizierte rund 130.000 interessante Gesteinsbrocken, die Hälfte davon untersuchten die Wissenschaftler. „Wir erkannten auf nur einem Bild einen Felsbrocken mit markanten dunklen Bereichen. Dieses Gestein unterschied sich stark von allen anderen, da es weniger Licht in Richtung Sonne zurückstreut als andere Gesteine. Wir vermuten, dass das an der besonderen Staubstruktur liegt, etwa an der Dichte und der Korngröße des Staubs“, erklärt Ottaviano Rüsch. „Normalerweise ist der Mondstaub sehr porös und reflektiert viel Licht in die Beleuchtungsrichtung. Wenn der Staub aber kompaktiert wird, steigt gewöhnlich auch die Helligkeit insgesamt. Dies ist bei den beobachteten staubbedeckten Felsen nicht der Fall“, fügt Marcel Hess von der TU Dortmund hinzu. Dies sei eine faszinierende Entdeckung – allerdings stehen die Wissenschaftler noch am Anfang, diesen Staub und seine Wechselwirkungen mit dem Gestein zu verstehen. In den kommenden Wochen und Monaten wollen die Forscher die Prozesse weiter untersuchen, die zu den Wechselwirkungen zwischen Staub und Felsen sowie zu der Entstehung der besonderen Staubstruktur führen. Zu diesen Prozessen gehören zum Beispiel die Anhebung des Staubs aufgrund elektrostatischer Aufladung oder die Wechselwirkung des Sonnenwinds mit lokalen Magnetfeldern.

Neben zahlreichen anderen internationalen unbemannten Raumfahrtmissionen zum Mond schickt die NASA in den kommenden Jahren einen automatischen Rover, einen fahrbaren Roboter, in die Reiner-Gamma-Region, um ähnliche Arten von Felsblöcken mit speziellem Staub zu finden. Auch wenn es noch Zukunftsmusik ist: Ein besseres Verständnis der Staubbewegung kann beispielsweise bei der Planung menschlicher Siedlungen auf dem Mond helfen. Denn aus den Erfahrungen der Apollo-Astronauten weiß man, dass Staub viele Probleme aufwirft, etwa die Verunreinigung technischer Geräte oder der Weltraumstationen.

Originalpublikation

Rüsch, O., Hess, M., Wöhler, C., Bickel, V. T., Marshal, R. M., Patzek, M., & Huybrighs, H. L. F. (2024). Discovery of a dust sorting process on boulders near the Reiner Gamma swirl on the Moon. Journal of Geophysical Research: Planets, 129, e2023JE007910. Doi: 10.1029/2023JE007910

Links:

Quelle: Pressemitteilung / Pressestelle der Universität Münster (upm)




Zusammensetzung titanreicher Basalte auf dem Mond entschlüsselt

Internationales Forschungsteam misst isotopische Zusammensetzung lunarer Gesteine

Die dunklen Bereiche auf der Oberfläche des Mondes, die wir auch von der Erde aus erkennen können, bestehen aus Basalten. Sie sind auf dem ersten Blick den Basalten auf der Erde sehr ähnlich. Allerdings sind viele Mondbasalte reich an Titan, wie Analysen dieser Gesteine aus mehreren Apollo-Missionen der US-Bundesbehörde für Raumfahrt, NASA, zeigen. Dabei handelt es sich um ein Übergangsmetall, das in terrestrischen Basalten nur in Spuren vorhanden ist. Es gibt einige Theorien, wie diese ungewöhnlichen Gesteine auf dem Mond entstanden sind.

Wissenschaftler der Universitäten Münster und Bristol (England) haben nun das Rätsel gelöst: Sie haben die isotopische Zusammensetzung dieser lunaren Gesteine mit extrem hoher Genauigkeit in neuartigen Massenspektrometern gemessen. Ihr Ergebnis: Die titanreichen Basalte müssen durch eine unvollständige Reaktion von titanreichen Schmelzen mit Nebengesteinen tief im lunaren Mantel entstanden sein. Die Ergebnisse sind nun in der Fachzeitschrift „Nature Geoscience“ erschienen. „Die Entstehung dieser Basalte wird seit über 50 Jahren intensiv diskutiert. Mit unseren Studienergebnissen können wir hiermit die Diskussion neu aufrollen“, betont Prof. Dr. Stephan Klemme vom Institut für Mineralogie der Universität Münster.

Originalpublikation

Klaver, M. et al. (2024). Reactive flow in the lunar mantle shapes the composition of high-Ti melts. Nature Geoscience. DOI: 10.1038/s41561-023-01362-5


Links:

Quelle: Pressemitteilung / Pressestelle der Universität Münster (upm)




Forscher finden Strukturen zur schnellen Leitung von Nervenimpulsen bei Insekten

Team um Neurobiologen von der Universität Münster veröffentlicht Erkenntnisse zur Evolution der glialen Umhüllung und der schnellen Signalleitung bei Neuronen

Das Gehirn der Tiere besteht aus zwei verschiedenen Zelltypen: Neurone, die Informationen verarbeiten und versenden und Gliazellen, die die Neurone auf vielfältige Weise unterstützen. Der französische Anatom Louis-Antoine Ranvier stellte im Jahr 1871 eine Besonderheit von Neuronen bei Wirbeltieren vor: So gibt es an den Fortsätzen dieser Nervenzellen ringförmige Regionen, an denen die Hüllschicht – das von Gliazellen gebildete Myelin – fehlt. Die „Ranvier’schen Schnürringe“ sind gemeinsam mit der elektrisch isolierenden Myelinhülle eine Grundlage dafür, dass elektrische Nervenimpulse über längere Strecken sehr schnell weitergegeben werden können. Sie „springen“ mit einer Geschwindigkeit von bis zu 100 Metern pro Sekunde von Schnürring zu Schnürring. Diese „saltatorische Erregungsleitung“ wurde lange als spezifisch für Wirbeltiere angesehen. Ein Forschungsteam um den Neurobiologen Prof. Dr. Christian Klämbt von der Westfälischen Wilhelms-Universität (WWU) Münster hat jetzt am Beispiel der Taufliege (Drosophila melanogaster) erstmals gezeigt, dass es auch bei Insekten ähnliche Strukturen gibt. Die Studie ist in der Fachzeitschrift eLife veröffentlicht.

Für die Arbeit analysierte das Team bei der Taufliege die Verteilung der Proteine, die für die neuronale Erregungsleitung notwendig sind. Die Wissenschaftlerinnen und Wissenschaftler zeigten mithilfe genetischer und mikroskopischer Verfahren, dass die der Weiterleitung zugrunde liegenden ionenleitenden Natrium- und Kaliumkanäle ähnlich wie bei Wirbeltieren in Clustern angeordnet sind. Wie in einer von der Arbeitsgruppe kürzlich publizierten theoretischen Arbeit beschrieben, macht die lokale Anhäufung von Ionenkanälen eine strikte räumliche Trennung von einzelnen Axonen, den Fortsätzen der Nervenzellen, erforderlich. Dies ist bei Wirbeltieren durch das gliale Myelin gewährleistet. Die Gruppe belegte, dass auch in Drosophila myelinähnliche Strukturen um Axone, nahe der die Ionenkanäle tragenden Plasmamembranbereiche, gebildet werden. Wie bei Wirbeltieren wird das Myelin durch spezifische Gliazellen gebildet und ist eine Voraussetzung für eine schnelle und genaue Erregungsleitung.

„Wir haben sowohl die dezidierte Organisation der spannungsregulierten Kanäle als auch den Aufbau myelinähnlicher Strukturen erstmals für Drosophila beschrieben“, betont Christian Klämbt. „Zusätzlich konnten wir zeigen, dass Gliazellen die genetische Aktivität und die Positionierung von neuronalen Ionenkanälen steuern.“ Die von den Forschern beschriebenen Ähnlichkeiten zwischen Wirbeltieren und den Taufliegen weisen darauf hin, dass das Vorkommen von Ionenkanal-Clustern gepaart mit einer verstärkten Isolierung ein grundlegendes Konzept in elektrischer Informationsleitung ist.

Die Arbeit hilft nicht nur, die Evolution von Myelin nachzuvollziehen, sondern wird es auch erlauben, die Biologie der Myelin-Bildung und -Regeneration genauer zu erforschen. Dies ist vor dem Hintergrund neurodegenerativer Erkrankungen wie Multipler Sklerose von großer Bedeutung. Bei der Therapie wird dabei bislang der Fokus auf die Unterdrückung der Entzündungsreaktion gelegt und die Förderung einer effektiven Re-Myelinisierung ist bisher nicht möglich. „Unsere Erkenntnisse werden daher auch dazu beitragen, Wege zu alternative Therapieformen beispielsweise für Multiple Sklerose aufzudecken“, sagt Christian Klämbt.

Für ihre Untersuchungen setzten die Forscher Methoden der molekularen Genetik in Kombination mit verschiedenen modernen bildgebenden Verfahren ein. Dazu zählt die neuartige elektronenmikroskopische Darstellung von markierten Proteinen und besonders hochauflösende konfokale Mikroskopie.

Die Deutsche Forschungsgemeinschaft (DFG) unterstützte die Arbeit finanziell (SFB 1348, B5, Kl 588/29).

Originalveröffentlichung

Simone Rey, Henrike Ohm, Frederieke Moschref, Dagmar Zeuschner, Marit Praetz, and Christian Klämbt (2023): Glial-dependent clustering of voltage-gated ion channels in Drosophila precedes myelin formation. eLife; DOI: 10.7554/eLife.85752


Links:


Quelle: Pressemitteilung / Pressestelle der Universität Münster (upm)




Experten bestätigen Meteoritenfund in Elmshorn

Himmelsgestein zeugt von intensiven Kollisionen im frühen Sonnensystem

Ein mutmaßlicher Meteoritenfund Ende April in Elmshorn in Schleswig-Holstein ist nun bestätigt: Wissenschaftler aus Münster und Dresden haben den Fund analysiert und dabei festgestellt, dass es sich bei dem Gestein um einen sogenannten gewöhnlichen Chondriten des Typen H handelt. Das ist eine Gruppe von Meteoriten, die einen besonders hohen Anteil an Metall besitzen. Das Himmelsgestein stammt aus der Urzeit des Sonnensystems vor 4,5 Milliarden Jahren und weist eine intensive Brekziierung auf. Das bedeutet, dass das Gestein aus verschiedenen Bestandteilen wie etwa sehr ursprünglichem und unverändertem so wie stark erhitztem Material besteht. „Die Brekziierung des Meteoriten ist durch vorherige Kollisionen im frühen Sonnensystem und im Asteroidengürtel entstanden, einer Region mit einer besonders hohen Ansammlung von Asteroiden, die zwischen Mars und Jupiter liegt. In anderen Worten, der Mutterkörper des Meteoriten Elmshorn ist dort mit anderen Asteroiden kollidiert und ermöglicht uns so Einblicke in die Geschichte dieses Himmelskörpers.“, erklärt Dr. Markus Patzek vom Institut für Planetologie der Universität Münster.

Für ihre Analysen zersägten die Wissenschaftler in Münster ein circa 40 Gramm schweres Stück des Meteoriten und stellten mehrere sogenannte Dünnschliffe her. Diese nur 30 Mikrometer dicken Gesteinsscheiben erlauben weitergehende Untersuchungen der internen Struktur mittels optischer und Elektronenmikroskopie. Ein Teil wurde zu einem feinen Pulver verarbeitet, das die Forscher zur weiteren chemischen und isotopischen Untersuchung beteiligten Instituten in Europa zur Verfügung gestellt haben. Dr. Detlev Degering vom VKTA – Strahlenschutz, Analytik & Entsorgung Rossendorf e.V. untersucht aktuell ein weiteres Fundstück des Meteoriten im Untertagelabor Felsenkeller mittels hochempfindlicher Gammaspektrometrie auf vorrangig kurzlebige Radionuklide. Diese entstanden während seines Aufenthaltes im All und bestätigen zum Beispiel, dass es sich tatsächlich um einen aktuellen Fall handelt. Dieter Heinlein vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) stellte bereits anhand von Fotos sicher, dass hier echte Steinmeteorite vorliegen.

Zum Hintergrund

Am 25. April leuchtete um 14.14 Uhr für etwa vier Sekunden eine Tageslicht-Feuerkugel über Schleswig-Holstein auf. Diese helle Leuchterscheinung wurde von zwei Meteorkameras des „Allsky7 Netzwerks“ aufgezeichnet und von einigen Augenzeugen in Deutschland und den Niederlanden beobachtet. Kurz darauf entdeckten Einwohner des Ortes Elmshorn Einschläge auf Dächern und in Gärten und fanden Meteorite von einigen hundert Gramm bis mehrere Kilogramm. Einige der Fundstücke stellten sie den Wissenschaftlern dankenswerter Weise zur Untersuchung zur Verfügung. Nach dem Meteoritenfall von Flensburg im Jahr 2019 ist dies der nächste Meteoritenfall in Deutschland, bei dem Bruchstücke eines fremden Himmelskörpers, der mit der Erde kollidierte, gefunden wurden.

Unter Leitung der münsterschen Planetologen Dr. Markus Patzek und Prof. Dr. Addi Bischoff werden in den kommenden Wochen weitere Forschungsarbeiten an dem Elmshorn Meteoriten koordiniert, an denen unter anderem Institute aus Deutschland, Frankreich und der Schweiz beteiligt sind. Die Wissenschaftler wollen herausfinden, ob der Meteorit weitere Erkenntnisse über Kollisions- und Bildungsprozesse im frühen Sonnensystem liefert.


Links:


Quelle: Pressemitteilung / Pressestelle der Universität Münster (upm)




Mit aktiven Teilchen Quantenmechanik verstehen

Physiker entdecken unerwartete Verbindung zwischen aktiven Teilchen und quantenmechanischen Systemen / Studie in „Nature Communications“

Die Untersuchung von aktiven Teilchen ist eines der am schnellsten wachsenden Teilgebiete der Physik. Als aktive Teilchen bezeichnen Physikerinnen und Physiker Objekte, die sich durch einen internen Antrieb von alleine fortbewegen. Dazu zählen Lebewesen wie schwimmende Bakterien und Fische, fliegende Vögel oder herumlaufende Menschen, aber auch künstliche Nanoroboter, die zum Beispiel für den Medikamententransport im Körper eingesetzt werden können. Insbesondere interessieren sich die Fachleute für das Verhalten von Systemen aus vielen aktiven Teilchen, um hierdurch beispielsweise Vogelschwärme, Biofilme oder Menschenansammlungen zu verstehen. Die Physiker Dr. Michael te Vrugt, Tobias Frohoff-Hülsmann, Prof. Dr. Uwe Thiele und Prof. Dr. Raphael Wittkowski vom Institut für Theoretische Physik der Westfälischen Wilhelms-Universität (WWU) Münster haben nun in Zusammenarbeit mit Prof. Dr. Eyal Heifetz von der Universität Tel Aviv (Israel) ein neues Modell („active model I+“) für die Dynamik von Systemen aus vielen aktiven Teilchen entwickelt. Die Studie ist in der Fachzeitschrift „Nature Communications“ veröffentlicht.

„Dieses Modell beschreibt insbesondere Teilchen, auf die nur geringe Reibungskräfte wirken, ein bislang nur wenig untersuchter Fall“, erklärt Erstautor Michael te Vrugt. Hierbei hat das Team festgestellt, dass dieses Modell für bestimmte Parameterwerte genauso aussieht wie die Schrödingergleichung. Die Schrödingergleichung ist die Grundgleichung der Quantenmechanik, welche das Verhalten von extrem kleinen Teilchen wie Elektronen oder Protonen beschreibt. Durch diese Analogie ist es möglich, in aktiven Systemen Analogien zu aus der Quantenmechanik bekannten Effekten zu finden. Die Physiker untersuchten in der aktuellen Arbeit zum einen den Tunneleffekt und zum anderen dunkle Materie.

Der Tunneleffekt ist ein quantenmechanisches Phänomen, bei dem ein Teilchen durch eine Barriere hindurchdringt („tunnelt“), obwohl es dafür eigentlich zu wenig Energie hat. Dieser Effekt spielt eine Rolle beim radioaktiven Zerfall, ist aber auch beispielsweise für den Speichervorgang in USB-Sticks wichtig. Die Autoren konnten nun zeigen, dass sich die Dichteverteilung von aktiven Teilchen, die mit einem Laserstrahl beleuchtet werden, in etwa wie die Wahrscheinlichkeitsverteilung eines quantenmechanischen Teilchens beim Tunneleffekt verhält.

Dunkle Materie ist eine Form von Materie, die nicht mit sichtbarem Licht wechselwirkt und deren Zusammensetzung bislang nicht verstanden ist, von deren Existenz man aber aus einer Vielzahl astronomischer Beobachtungen weiß. In der Studie wies das Team nun durch einen Vergleich der entsprechenden mathematischen Modelle nach, dass sich elektrisch geladene aktive Teilchen ähnlich wie dunkle Materie verhalten. „Dies eröffnet eine Möglichkeit, kosmologische Strukturbildungsprozesse im Labor nachzustellen“, kommentiert Raphael Wittkowski.

Finanzierung

Die Promotionen von Michael te Vrugt und Tobias Frohoff-Hülsmann wurden durch die Studienstiftung des deutschen Volkes unterstützt. Die Arbeitsgruppe Wittkowski erhält finanzielle Unterstützung durch die Deutsche Forschungsgemeinschaft (DFG, Project-ID 433682494 – SFB 1459).

Originalpublikation

M. te Vrugt, T. Frohoff-Hülsmann, E. Heifetz, U. Thiele, R. Wittkowski (2023). From a microscopic inertial active matter model to the Schrödinger equation. Nature Communications 14, 1302; DOI: 10.1038/s41467-022-35635-1


Links:


Quelle: Pressemitteilung / Pressestelle der Universität Münster (upm)




Astronauten werden wieder Feldforscher

Harald Hiesinger über sein Trainingsprogramm für die Europäische Weltraumorganisation

In wenigen Jahren will die Menschheit zum Mond zurückkehren. Astronautinnen und Astronauten sollen auf Artemis-Missionen an der Planung und Durchführung von geologischen Expeditionen auf der Mondoberfläche teilnehmen. Um sie auf diese Aufgaben bestmöglich vorzubereiten, hat die Europäische Weltraumorganisation (ESA) das sogenannte PANGAEA-Programm (Planetary ANalogue Geological and Astrobiological Exercise for Astronauts) ins Leben gerufen. Seit 2016 werden Astronauten von bisher drei Raumfahrtagenturen mit grundlegenden Kenntnissen und Fähigkeiten in der Feldgeologie ausgestattet, die für die Erforschung des Mondes erforderlich sind. Kathrin Kottke sprach mit Dr. Harald Hiesinger, PANGAEA-Ausbilder und Professor für geologische Planetologie an der Westfälischen Wilhelms-Universität (WWU) Münster, über das Ausbildungsprogramm und die Rolle der geologischen Feldforschung auf dem Mond.

Warum ist dieses wissenschaftliche Training wichtig?

Es gibt viele Astronauten mit einem wissenschaftlichen Hintergrund, aber nur wenige mit Erfahrung in der geologischen Feldforschung. Für künftige bemannte Missionen zum Mond und zum Mars werden wir jedoch Astronauten benötigen, die die Oberfläche in komplexen geologischen Umgebungen erforschen. PANGAEA beinhaltet eine Reihe an Kursen, die sich mit den Themen der geologischen und astrobiologischen Erkundung von Planeten befassen und das wissenschaftliche Fachwissen vermitteln.

Wer nimmt an den Kursen teil, und wie laufen sie ab?

Zu den Teilnehmern gehören ESA- und NASA-Astronauten sowie in der Vergangenheit auch Roscosmos-Kosmonauten, aber auch Missionsdesigner, Betriebspersonal und Ingenieure. Das Training basiert auf Theorie und Praxis – wobei der Unterricht im ‚Klassenzimmer‘ und im Feld eng miteinander verwoben ist. Es ist wichtig, dass das zuvor Gelernte direkt in der Praxis Anwendung findet. Die Sitzungen sind so konzipiert, dass sie die Selbstständigkeit der Auszubildenden in der Feldgeologie erhöhen. Dazu beinhalten sie geführte oder selbstständig durchgeführte geologische Begehungen und das Üben von Techniken zur Probennahme. Damit die Kursteilnehmer unterschiedliche geologische Formationen und Strukturen kennenlernen, reisen wir zu unterschiedlichen Orten.

Wohin genau?

Zu unseren Feldstandorten gehören die Perm-Trias-Sedimentabfolgen in den italienischen Dolomiten, Einschlag-Lithologien im Rieskrater in Süddeutschland, eine umfassende Reihe vulkanischer Ablagerungen auf Lanzarote und Anorthosit-Aufschlüsse auf den Lofoten in Norwegen.

Vermutlich hat jedes Gebiet seine spezifischen Besonderheiten?

Jedes dieser Gebiete dient als Grundlage für die wichtigsten Lerneinheiten: erstens Erdgeologie, Gesteinserkennung und Sedimentologie auf der Erde und dem Mars, zweitens Mondgeologie und Einschlagskrater, drittens Vulkanismus auf der Erde, dem Mond und dem Mars sowie Astrobiologie und viertens sogenanntes Intrusivgestein und die Entwicklung der lunaren Urkruste.

Sind die Astronauten danach ‚richtige‘ Wissenschaftler?

Ja! Wir bieten ein kompaktes – jedoch sehr intensives und anspruchsvolles – Programm an. Die Astronauten müssen am Ende in der Lage sein, wissenschaftliche Entscheidungen großteils selbstständig zu treffen. Im Apollo-Programm hat sich das Konzept ‚Train them, trust them and turn them loose‘ sehr bewährt. Nur so ist es möglich, die enormen Fähigkeiten der Astronauten voll auszuschöpfen, um in kurzer Zeit möglichst viel über den besuchten Körper zu lernen. In anderen Worten: Die Astronauten werden wieder als Feldforscher fungieren und die unbekannte Umgebung auf der Planetenoberfläche erkunden.

Auf was werden sie konkret vorbereitet?

Zum Beispiel müssen sie die Umgebung untersuchen, um wissenschaftlich interessante Gesteine und Formationen zu identifizieren. Dazu setzen sie tragbare Instrumente und Kamerasysteme ein, mit denen sie Informationen sammeln. Ihre Funde und Erkenntnisse teilen sie dem bodengestützten Wissenschaftsteam mit. Dann wird gemeinsam entschieden, was die nächsten Schritte sind.

Was genau ist Ihre Aufgabe in den Kursen?

Meine Aufgabe ist es, die Astronauten mit der Geologie des Mondes vertraut zu machen. Ich behandle dabei Themen wie Vulkanismus auf dem Mond, Impaktprozesse und wie Impakte – also Einschläge von Kleinkörpern wie Meteoroide, Asteroiden und Kometen – zur Altersdatierung von Oberflächen genutzt werden können. Es geht aber auch um volatile Komponenten, zum Beispiel Wasser, in den permanent im Schatten liegenden Kraterböden nahe der Pole, die für die Exploration des Mondes durch Astronauten nutzbar sind. Auch eine Übung in der geologischen Kartierung eines Gebietes auf dem Mond führe ich mit den Astronauten durch, sodass sie letztlich ein solides Wissen über den Mond und die offenen wissenschaftlichen Fragen besitzen.

Wie genau laufen denn diese Praxisübungen ab?

Gemeinsam mit Kollegen des Rieskratermuseums und des Geoparks leite ich parallel zur Theorie die Exkursionen im Rieskrater, auf denen die Astronauten unmittelbar Erfahrungen in der Impaktgeologie sammeln. Im Gelände diskutieren wir die unterschiedlichen Gesteine, Morphologien, Prozesse, offene Fragen und wie dieses Wissen auf den Mond angewendet werden kann. Dabei ist es für mich immer wieder faszinierend zu sehen, wie schnell die Astronauten Informationen nicht nur aufnehmen, sondern auch Wissenslücken erkennen und offene wissenschaftliche Fragen identifizieren. Und letztlich ist es sehr schön zu sehen, wie neugierig die Astronauten sind und wie sehr sie an der Erforschung unseres Sonnensystems interessiert sind.

Wie geht es nun weiter?

Nachdem wir unsere Erkenntnisse des Trainingsprogramms in der Fachzeitschrift ‚Acta Astronautica‘ publiziert haben, folgen nun weitere Kurse, die auf unseren Erfahrungen und den Rückmeldungen der Astronauten aufbauen. Im September geht es für mich wieder ins Nördlinger Ries, um die nächste Kohorte auszubilden.


Links:


Quelle: Pressemitteilung / Pressestelle der Universität Münster (upm)




Forscher sortieren einzelne Lichtquanten mit Höchstgeschwindigkeit

Nanoschallwelle kontrolliert Photonen auf einem Chip – Meilenstein hin zu hybriden Quantentechnologien

Einem deutsch-spanischen Forscherteam aus Valencia, Münster, Augsburg, Berlin und München ist es gelungen, einzelne Lichtquanten mit höchster Präzision zu kontrollieren. In der Fachzeitschrift „Nature Communications“ berichten die Wissenschaftler, wie sie einzelne Photonen auf einem Chip mithilfe einer Schallwelle gezielt zwischen zwei Ausgängen mit Gigahertz-Frequenzen hin- und herschalten. Diese erstmals gezeigte Methode kann nun für akustische Quantentechnologien oder komplexe integrierte photonische Netzwerke angewandt werden.

Licht- und Schallwellen bilden das technologische Rückgrat moderner Kommunikation. Während Glasfasern mit Laserlicht das weltweite Internet aufspannen, werden Chips für Nanoschallwellen zur drahtlosen Datenübertragung mit Gigahertz-Frequenzen zwischen Smartphones, Tablets oder Laptops verwendet. Eine der drängendsten Fragen für die Zukunft ist daher, wie diese Technologien um Quantensysteme erweitert werden können, um beispielsweise abhörsichere Quantenkommunikationsnetzwerke aufzubauen.

„Lichtquanten oder Photonen spielen bei der Entwicklung von Quantentechnologien eine ganz zentrale Rolle“, unterstreicht Physiker Prof. Dr. Hubert Krenner, der die Studie in Münster und Augsburg leitet. „Unserem Team ist es nun gelungen, einzelne Photonen auf einem daumennagelgroßen Chip zu erzeugen und dann mit bisher unerreichter Präzision exakt getaktet mit Hilfe von Schallwellen zu kontrollieren.“ Dr. Mauricio de Lima, der an der Universität Valencia forscht und die dortigen Arbeiten koordinierte, ergänzt: „Das Funktionsprinzip unseres Chips war uns zwar für ‚klassisches‘ Laserlicht bekannt. Doch jetzt ist uns mit Lichtquanten der langersehnte Durchbruch hin zu Quantentechnologien gelungen.“

In ihrer Studie fertigten die Forscher einen Chip, der mit winzigen „Leiterbahnen“ für Lichtquanten, sogenannten Wellenleitern, ausgestattet ist. Diese sind zirka 30-mal dünner als ein menschliches Haar. Zusätzlich enthielt dieser Chip Quanten-Lichtquellen, sogenannte Quantenpunkte. Dr. Matthias Weiß von der Universität Münster, der die optischen Experimente durchführte, erläutert: „Diese Quantenpunkte sind wenige Nanometer große Inseln im Inneren der Wellenleiter, die Licht als einzelne Photonen abstrahlen. In unserem Chip sind die Quantenpunkte mit eingebaut und wir müssen einzelne Photonen nicht erst kompliziert mit einer anderen Quelle erzeugen und mit den Wellenleitern koppeln.“ Dr. Dominik Bühler, der im Rahmen seiner Doktorarbeit an der Universität Valencia die Quanten-Chips entworfen hat, weist auf die Schnelligkeit der Technik hin: „Mithilfe der Nanoschallwellen ist es uns möglich, die direkt auf dem Chip erzeugten Photonen mit vorher nicht erreichter Geschwindigkeit während ihrer Ausbreitung in den Wellenleitern zwischen zwei Ausgängen hin und her zu schalten.“

Die Forscher sehen ihre Ergebnisse als einen Meilenstein auf dem Weg zu hybriden Quantentechnologien, da sie drei verschiedene Quantensysteme kombinieren: Quantenlichtquellen in Form der Quantenpunkte, die erzeugten Lichtquanten sowie Phononen, die Quantenteilchen der Schallwelle. Die an der Universität Valencia entworfenen und am Berliner Paul-Drude-Institut für Festkörperelektronik mit Quantenpunkten der TU München hergestellten hybriden Quanten-Chips übertrafen die Erwartungen des Forschungsteams.

Das internationale Team hat einen weiteren entscheidenden Schritt hin zu akustischen Quantentechnologien gemacht. „Wir arbeiten bereits mit Hochdruck daran, unseren Chip zu erweitern, um den Quantenzustand der Photonen beliebig programmieren zu können oder sogar mehrere Photonen mit unterschiedlichen Farben zwischen vier oder mehr Ausgängen zu sortieren“, blickt Dr. Mauricio de Lima in die Zukunft. Physik-Professor Hubert Krenner fügt hinzu „Hier kommt uns eine einzigartige Stärke unserer Nanoschallwellen zugute. Da diese sich nahezu verlustfrei auf der Chipoberfläche ausbreiten, können wir elegant fast beliebig viele Wellenleiter mit einer einzigen Welle hochpräzise kontrollieren.“

Die Europäische Union hat die Forschungsarbeiten im Doktorandenkolleg ITN SAWtrain im Zuge des Rahmenprogramms „Horizon 2020“ (Marie-Skłodowska-Curie Grant Agreement 642688) gefördert.

Originalveröffentlichung

Dominik D. Bühler, Matthias Weiß, Antonio Crespo-Poveda, Emeline D. S. Nysten, Jonathan J. Finley, Kai Müller, Paulo V. Santos, Mauricio M. de Lima Jr., H. J. Krenner (2022): On-chip generation and dynamic piezo-optomechanical rotation of single photons. Nature Communications 13, Article number: 6998; DOI: 10.1038/s41467-022-34372-9

Weiterführende Informationen

Per Delsing et al. (2019): The 2019 surface acoustic wave roadmap. Journal of Physics D: Applied Physics 52, 353001; DOI: 10.1088/1361-6463/ab1b04

Pressestelle der Universität Münster
Schlossplatz 2, 48149 Münster
pressestelle@uni-muenster.de
+49 251 83-22232 o. -22233

upm – Mediendienst der WWU Münster
http://www.uni-muenster.de/journalisten/upmabo/


Links:


Quelle: Pressemitteilung / Pressestelle der Universität Münster (upm)




Astroseminar beleuchtet kosmische Boten und galaktische Phänomene

Von Gravitationswellen, Galaxien und Antimaterie: Interessierte sind am 30. September und 1. Oktober an der Universität Münster willkommen

Wer etwas über Gravitationswellen, Galaxien und Antimaterie erfahren möchte, der ist beim 23. Astroseminar am 30. September (Freitag) und 1. Oktober (Samstag) an der Westfälischen Wilhelms-Universität (WWU) Münster genau richtig. Expertinnen und Experten beleuchten in Vorträgen im Hörsaal HS 1 an der Wilhelm-Klemm-Straße 10 allgemeinverständlich aktuelle Ergebnisse, Experimente und offene Fragen der Astrophysik. Interessierte erfahren, was sich alles in den unendlichen Weiten des Alls tummelt: von winzigen Neutrinos bis zur gigantischen Galaxie. Unter anderem geht es um die Frage, was man durch den Blick auf Neutrinos und andere kosmische Boten über den Weltraum lernen kann. Forscherinnen und Forscher der WWU geben Einblicke in ihre Labore und in aktuelle Experimente. Die Teilnahme am Astroseminar ist kostenlos. Eine Anmeldung ist lediglich für die Laborführungen zwingend erforderlich. Um eine unverbindliche Anmeldung auch für die Teilnahme an den Vorträgen wird jedoch gebeten. Weitere Informationen gibt es auf den Webseiten des Astroseminars unter www.uni-muenster.de/Physik.Astroseminar.


Links:


Quelle: Pressemitteilung / Pressestelle der Universität Münster (upm)